
Hadoop

MapReduce
&

http://www.wordle.net/

http://www.wordle.net/

Hadoop

Input data set will not fit on a single computer's hard
drive

Built to process "web-scale" data on the order of
petabytes.

is an open-source software framework (or platform) for…

Large clusters of commodity hardware

Reliable

Scalable

Distributed

computing!

Storage/Computational unit Failures

completely transparent to applications.

+

+

Hadoop

Although not necessarily, typically think of two main components:

Data intensive…
 … distributed processing.

•  A distributed file system.

•  Focuses on high-throughput
access to application data.

Again, software for

Hadoop DFS
 Hadoop MapReduce

•  System for parallel processing of large
data sets.

•  Executes programs adhering to a specific
programming model: MapReduce

HDFS

Hadoop Distributed File System

•  Breaks up input data into block of fixed length

•  Sends the blocks to several machines in the cluster

•  A block is stored several times to prevent losses.

•  One machine remembers what is where: Namenode

•  All the other machines just store blocks: Datanodes

Quite simple, Master-Slave architecture…

HDFS

Datanode

127.0.0.1

Datanode

127.0.0.4

Datanode

127.0.0.3

Datanode

127.0.0.2

Namenode

Client

Filename: /mydir/foo.jar
Block, Replicas, Locations,…
 1, 3, 127.0.0.1, 127.0.0.2, 127.0.0.3, …
 2, 3, 127.0.0.2, 127.0.0.3, 127.0.0.4, …
 3, 3, 127.0.0.7, 127.0.0.8, 127.0.0.9, … 2 1 3 foo.jar

1 1 1 2 2 2

(Metadata)

Rack 1
 Rack 2

Hadoop MapReduce Engine

The computational platform

•  Also a simple Master – Slave architecture.

•  Clients send jobs to the JobTracker

•  The JobTracker splits the work into small tasks"
and assigns them to the TaskTrackers.

What kind of jobs?

•  MapReduce jobs. (We will get there)

TaskTracker

127.0.0.1

TaskTracker

127.0.0.4

TaskTracker

127.0.0.3

TaskTracker

127.0.0.2

JobTracker

Client

Hadoop Summary

Software for Reliable Scalable Distributed Computing

•  HDFS Layer

127.0.0.0
 127.0.0.3
127.0.0.2
127.0.0.1

Master
 Slave 1
 Slave 2
 Slave 3

•  MapReduce Layer

•  Master – Slave organized cluster

•  Many more…

MapReduce

“MapReduce: Simplified Data Processing on Large Clusters”

Jeffrey Dean and Sanjay Ghemawat of Google

Appeared in:

OSDI'04: Sixth Symposium on Operating System Design and Implementation,

San Francisco, CA, December, 2004.

Cited: About 3660 times

A programming paradigm

•  for processing large datasets, typically in a cluster of computers

MapReduce

A programming paradigm

•  for processing large datasets, typically in a cluster of computers.

•  in 2 steps:

•  Map step: parts of the file are processed in parallel and produce some
intermediate output.

•  Reduce step: intermediate output of all individual parts is combined to
create the final output.

Visualization coming up…

•  Basic Idea: minimal data transfer - send the code to the data and execute,

•  Need not worry about fault tolerance, parallelization, status and monitoring
tools. All taken care by the system.

•  Only worry about your algorithm: Map and Reduce steps.

MapReduce

Mapping Process

Node 1

Reducing Process

Node 1

Reducing Process

Node 2

Reducing Process

Node 3

Mapping Process

Node 2

Mapping Process

Node 3

Input data

(Preloaded locally)

Intermediate Output

Final Output

(Stored locally)

Values exchanged

(Shuffle Process)

Input File

Output File

MapReduce

Reduce Map Shuffle Order

Reducer Mapper

<k1, v1> <k2, v2>
<k2, list(v2)>

<k3, v3>

A little more detail…

•  A file consists of Records (e.g. in a text file, a line can be a “Record”).

•  Each Record is fed to a map functions as a <k1, v1> pair and processed
independently.

•  Mappers emit other <k2, v2> pairs.

•  Mapper outputs are hashed by key so that all <k2, v2> pairs go to the
same Reducer and grouped by key to produce <k2, list(v2)>.

•  Finally, Reducers emit <k3, v3> pairs that form the final output.

MapReduce

Mapping Process

Node 1

Reducing Process

Node 1

Reducing Process

Node 2

Reducing Process

Node 3

Mapping Process

Node 2

Mapping Process

Node 3

Input data

(Preloaded locally)

Intermediate Output

Final Output

(Stored locally)

Values exchanged

(Shuffle Process)

Input File

Output File

“Hello "
 World”

The quick brown fox jumped
over the lazy dog. Nobody
saw the brown fox again.

brown, 2
again, 1

dog, 1
fox, 2
jumped, 1

over, 1

lazy, 1
nobody, 1

quick, 1

the, 3
saw, 1

The Word Count Example

The Word Count Example

<0, the quick brown fox>

<28, over the lazy dog. Nobody>

<54, saw the brown fox again.>

<the, 1>
<quick, 1>
<brown, 1>
<fox, 1>
<jumped, 1>

<over, 1>
<the, 1>
<lazy, 1>
<dog, 1>
<nobody, 1>

<the, 1>
<brown, 1>
<fox, 1>
<again, 1>

<saw, 1>

<brown, 1>

<brown, 1>

<again, 1>

<dog, 1>

<fox, 1>

<jumped, 1>

<fox, 1>

<over, 1>

<lazy, 1>

<nobody, 1>

<the, 1>

<quick, 1>

<the, 1>

<the, 1>

<saw, 1>

<brown, 2>

<again, 1>

<dog, 1>

<fox, 2>
<jumped, 1>

<over, 1>

<lazy, 1>
<nobody, 1>

<quick, 1>

<the, 3>

<saw, 1>

Tasktracker 2

Tasktracker 3

Tasktracker 4

<brown, 1, 1>

<again, 1>

<dog, 1>

<fox, 1, 1>
<jumped,1>

<over, 1>

<lazy, 1>
<nobody,1>

<quick, 1>

<the, 1,1,1>

<saw, 1>

Reduce Map Shuffle Order

Reducer Mapper

<k1, v1> <k2, v2>
<k2, list(v2)>

<k3, v3>

Tasktracker 1

MapReduce

Can any problem be solved in MapReduce?

Short answer: No!

Even fewer in a single MapReduce cycle…

MapReduce

But, using…

• a few iterations, or

• chains of programs, and

•  smart choice of <key, value> pairs…
 distributed grep

distributed sort

web link-graph reversal

term-vector per host

web access log stats

inverted index construction

document clustering

machine learning

statistical machine translation

… quite a lot can be done!

A simple, non-trivial example

Counting Triangles

and the Curse of the Last Reducer

Siddharth Suri, Sergei Vassilvitskii, Yahoo! Research

* The sequel contains extended parts of Sergei’s presentation.

Counting Triangles

Why? Clustering Coefficient:

cc() = N/A
cc() = 1/3
cc() = 1
cc() = 1

cc(v) =
|{(u,w) ∈ E|u,w ∈ N(v)}|

�deg(v)
2

�

G = (V,E)Given a graph the Clustering Coefficient cc(v) of a vertex v is

the fraction of pairs of neighbors of v that are also neighbors:

Counting Triangles

Why? Clustering Coefficient:

cc() = N/A
cc() = 1/3
cc() = 1
cc() = 1

G = (V,E)Given a graph the Clustering Coefficient cc(v) of a vertex v is

the fraction of pairs of neighbors of v that are also neighbors:

cc(v) =
#∆�s incident to v

�deg(v)
2

�

Counting Triangles

Why Clustering Coefficient ?

The Clustering Coefficient captures how tight a network is around a node.

cc() = 1/2 cc() = 1/10

Counting Triangles

Sequential Algorithm

T = 0;

foreach v in V do

 foreach u,w pair in N(v) do

 if (u, w) in E then

 T = T + 1;

return T;

•  Running time

•  Even for sparse graphs can be quadratic in the number of edges if a
vertex has high degree.

•  It happens in natural graphs.

�

v∈V

deg(v)2

Counting Triangles

Sequential Algorithm 2 (Schank ‘07)

T = 0;

foreach v in V do

 foreach u,w pair in N(v) do

 if deg(u) > deg(v) &&
 deg(w) > deg(v), then
 if (u, w) in E then
 T = T + 1;

return T;

•  Running time

•  There exists graph for which we cannot do better.

O(m3/2)

Counting Triangles in M/R

Map 1: Input <(u,v); 0>
 if deg(v) > deg(u), then
 emit <u;v>

Reduce 1: Input <v; S subset of N(v)>
 for (u,w) : u,w in S, do
 emit <v;(u,w)>

Map 2: if Input of type <v;(u,w)> then
 emit <(u,w); v>

 if Input of type <(u,v);0> then
 emit <(u,v); $>

Reduce 2: Input <(u,w); S subset of Union(V, {$})>
 if $ appears in S then
 for v in S except $ do
 emit <v;1> //emit <u;1>, emit <w;1>

Counting Triangles in M/R

Analysis

-  How much main memory per reduce call? (sublinear in the
input).

-  Total memory used for the computation on the cluster (not
to exceed n2)

-  Number of rounds.

