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Hadoop


Input data set will not fit on a single computer's hard 
drive


Built to process "web-scale" data on the order of 
petabytes.


is an open-source software framework (or platform) for…


Large clusters of commodity hardware


Reliable


Scalable 


Distributed 


computing!


Storage/Computational unit Failures

completely transparent to applications.


+


+




Hadoop


Although not necessarily, typically think of two main components: 


Data intensive…
 … distributed processing.


•  A distributed file system.


•  Focuses on high-throughput 
access to application data.


Again, software for


Hadoop DFS
 Hadoop MapReduce


•  System for parallel processing of large 
data sets.


•  Executes programs adhering to a specific 
programming model: MapReduce




HDFS

Hadoop Distributed File System


•  Breaks up input data into block of fixed length


•  Sends the blocks to several machines in the cluster


•  A block is stored several times to prevent losses.


•  One machine remembers what is where: Namenode


•  All the other machines just store blocks: Datanodes


Quite simple, Master-Slave architecture…




HDFS


Datanode

127.0.0.1


Datanode

127.0.0.4


Datanode

127.0.0.3


Datanode

127.0.0.2


Namenode


Client

Filename: /mydir/foo.jar 
Block,     Replicas,      Locations,… 
       1,                 3,      127.0.0.1, 127.0.0.2, 127.0.0.3, … 
       2,                 3,      127.0.0.2, 127.0.0.3, 127.0.0.4, … 
       3,                 3,      127.0.0.7, 127.0.0.8, 127.0.0.9, … 2 1 3 foo.jar 

1 1 1 2 2 2 

(Metadata)


Rack 1
 Rack 2




Hadoop MapReduce Engine

The computational platform


•  Also a simple Master – Slave architecture.


•  Clients send jobs to the JobTracker


•  The JobTracker splits the work into small tasks"
and assigns them to the TaskTrackers.


What kind of jobs?

•  MapReduce jobs.  (We will get there)


TaskTracker

127.0.0.1


TaskTracker

127.0.0.4


TaskTracker

127.0.0.3


TaskTracker

127.0.0.2


JobTracker


Client




Hadoop Summary


Software for Reliable Scalable Distributed Computing


•  HDFS Layer


127.0.0.0
 127.0.0.3
127.0.0.2
127.0.0.1


Master
 Slave 1
 Slave 2
 Slave 3


•  MapReduce Layer


•  Master – Slave organized cluster


•  Many more…




MapReduce


“MapReduce: Simplified Data Processing on Large Clusters” 


Jeffrey Dean and Sanjay Ghemawat of Google


Appeared in:

OSDI'04: Sixth Symposium on Operating System Design and Implementation,

San Francisco, CA, December, 2004.


Cited: About 3660 times


A programming paradigm


•  for processing large datasets, typically in a cluster of computers




MapReduce

A programming paradigm


•  for processing large datasets, typically in a cluster of computers.


•  in 2 steps:


•  Map step: parts of the file are processed in parallel and produce some 
intermediate output.


•  Reduce step: intermediate output of all individual parts is combined to 
create the final output.


Visualization coming up… 

•  Basic Idea: minimal data transfer - send the code to the data and execute,


•  Need not worry about fault tolerance, parallelization, status and monitoring 
tools. All taken care by the system.


•  Only worry about your algorithm: Map and Reduce steps.




MapReduce


Mapping Process


Node 1


Reducing Process


Node 1


Reducing Process


Node 2


Reducing Process


Node 3


Mapping Process


Node 2


Mapping Process


Node 3


Input data

(Preloaded locally)


Intermediate Output


Final Output

(Stored locally)


Values exchanged

(Shuffle Process)


Input File


Output File




MapReduce


Reduce Map Shuffle Order 

Reducer Mapper 

<k1, v1> <k2, v2> 
<k2, list(v2)> 

<k3, v3> 

A little more detail…


•  A file consists of Records (e.g. in a text file, a line can be a “Record”).


•  Each Record is fed to a map functions as a <k1, v1> pair and processed 
independently.


•  Mappers emit other <k2, v2> pairs.


•  Mapper outputs are hashed by key so that all <k2, v2> pairs go to the 
same Reducer and grouped by key to produce <k2, list(v2)>.


•  Finally, Reducers emit <k3, v3> pairs that form the final output.




MapReduce


Mapping Process


Node 1


Reducing Process


Node 1


Reducing Process


Node 2


Reducing Process


Node 3


Mapping Process


Node 2


Mapping Process


Node 3


Input data

(Preloaded locally)


Intermediate Output


Final Output

(Stored locally)


Values exchanged

(Shuffle Process)


Input File


Output File




“Hello "
  World”


The quick brown fox jumped 
over the lazy dog. Nobody 
saw the brown fox again. 

brown,  2 
again,  1 

dog,    1 
fox,    2 
jumped, 1 

over,   1 

lazy,   1 
nobody, 1 

quick,  1 

the,    3 
saw,    1 

The Word Count Example




The Word Count Example


<0,  the quick brown fox> 

<28, over the lazy dog. Nobody> 

<54, saw the brown fox again.> 

<the,    1> 
<quick,  1> 
<brown,  1> 
<fox,    1> 
<jumped, 1> 

<over,   1> 
<the,    1> 
<lazy,   1> 
<dog,    1> 
<nobody, 1> 

<the,    1> 
<brown,  1> 
<fox,    1> 
<again,  1> 

<saw,    1> 

<brown,  1> 

<brown,  1> 

<again,  1> 

<dog,    1> 

<fox,    1> 

<jumped, 1> 

<fox,    1> 

<over,   1> 

<lazy,   1> 

<nobody, 1> 

<the,    1> 

<quick,  1> 

<the,    1> 

<the,    1> 

<saw,    1> 

<brown,  2> 

<again,  1> 

<dog,    1> 

<fox,    2> 
<jumped, 1> 

<over,   1> 

<lazy,   1> 
<nobody, 1> 

<quick,  1> 

<the,    3> 

<saw,    1> 

Tasktracker 2 

Tasktracker 3 

Tasktracker 4 

<brown, 1, 1> 

<again, 1> 

<dog,   1> 

<fox,   1, 1> 
<jumped,1> 

<over,  1> 

<lazy,  1> 
<nobody,1> 

<quick, 1> 

<the,   1,1,1> 

<saw,   1> 

Reduce Map Shuffle Order 

Reducer Mapper 

<k1, v1> <k2, v2> 
<k2, list(v2)> 

<k3, v3> 

Tasktracker 1 



MapReduce


Can any problem be solved in MapReduce?


Short answer: No!


Even fewer in a single MapReduce cycle…




MapReduce

But, using…


• a few iterations, or


• chains of programs, and


•  smart choice of <key, value> pairs…
 distributed grep 


distributed sort 


web link-graph reversal


term-vector per host 


web access log stats


inverted index construction 


document clustering


machine learning


statistical machine translation


… quite a lot can be done!




A simple, non-trivial example


Counting Triangles

and the Curse of the Last Reducer


Siddharth Suri, Sergei Vassilvitskii, Yahoo! Research


* The sequel contains extended parts of Sergei’s presentation.




Counting Triangles

Why? Clustering Coefficient:


cc(    ) = N/A 
cc(    ) = 1/3 
cc(    ) = 1 
cc(    ) = 1 

cc(v) =
|{(u,w) ∈ E|u,w ∈ N(v)}|

�deg(v)
2

�

G = (V,E)Given a graph                        the Clustering Coefficient cc(v) of a vertex v is

the fraction of pairs of neighbors of v that are also neighbors:




Counting Triangles

Why? Clustering Coefficient:


cc(    ) = N/A 
cc(    ) = 1/3 
cc(    ) = 1 
cc(    ) = 1 

G = (V,E)Given a graph                        the Clustering Coefficient cc(v) of a vertex v is

the fraction of pairs of neighbors of v that are also neighbors:


cc(v) =
#∆�s incident to v

�deg(v)
2

�



Counting Triangles

Why Clustering Coefficient ?


The Clustering Coefficient captures how tight a network is around a node.


cc(    ) = 1/2 cc(    ) = 1/10 



Counting Triangles

Sequential Algorithm


T = 0; 

foreach v in V do 

   foreach u,w pair in N(v) do 

    if (u, w) in E then 

   T = T + 1; 

return T; 

•  Running time


•  Even for sparse graphs can be quadratic in the number of edges if a 
vertex has high degree.


•  It happens in natural graphs.


�

v∈V

deg(v)2



Counting Triangles

Sequential Algorithm 2 (Schank ‘07)


T = 0; 

foreach v in V do 

   foreach u,w pair in N(v) do 

    if deg(u) > deg(v) &&  
     deg(w) > deg(v), then  
    if (u, w) in E then 
   T = T + 1; 

return T; 

•  Running time


•  There exists graph for which we cannot do better.


O(m3/2)



Counting Triangles in M/R

Map 1: Input <(u,v); 0> 
       if deg(v) > deg(u), then 
          emit <u;v> 

Reduce 1: Input <v; S subset of N(v)> 
          for (u,w) : u,w in S, do 
               emit <v;(u,w)> 

Map 2: if Input of type <v;(u,w)> then 
          emit <(u,w); v> 

       if Input of type <(u,v);0> then 
          emit <(u,v); $> 

Reduce 2: Input <(u,w); S subset of Union(V, {$})> 
          if $ appears in S then 
             for v in S except $ do 
                 emit <v;1>    //emit <u;1>, emit <w;1> 



Counting Triangles in M/R

Analysis


-  How much main memory per reduce call? (sublinear in the 
input).


-  Total memory used for the computation on the cluster (not 
to exceed n2)


-  Number of rounds.



