Stay on path: PCA along graph paths TEXAS
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[ Sparse PCA ] Data model] [Algorithms] [Experiments]

Find direction of maximum variance (similar to vanilla PCA), but [ (p,k,d)-layer graph G ] layer  in & out degree Goal: Approximate the solution the NP-Hard constrained [ Synthetic] Data generated according to the (p,k,d)-layer graph model.

quadratic maximization. o , (p=1000, k=50, d=10, 100 MC iterations)
Observe n samples in RP and solve: @ Q Stde twformation
Source Target G=(V,FE) /imposed structure

- _
Empirical covariance matrix vertex @ Q %O 5@ O vertex Input data

Extracted feature is sparse: a linear combination of a few variables.
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- L sparse PCA: amples n amples
- Simple, but captures natural structures (e.g., a grid in 3D space). _
M - Nonr—)trivial' thepquadratic maximization i(s NgP—hagrgd Pace) Initialize an estimate (e.g., randomly). nit Xg,2 < 0 Spansegranbazes
ore structure... | | - Multiply estimate with cov. matrix.
[ Spike along a path ] - Project on feasible set to get new W, « Sx,
e th imMati , , . estimate. Neuroscience Data ] (Human Connectome Project
Sparsity is Structure (a 0™ order approximation) Data samples generated according to the spiked covariance model, - Repeat Bower (teratiomn : [ I jech
What if we know more (e.g., group sparsity, tree structures,...)? but signal supported supported along a path of G. | ith srolestion Xi+1 ¢ Proj(wi; G) - Single-session/single-participant resting state tMRI dataset.
» , PtJ - Variables: p = 111 Regions of Interest (HarvardOxford Atlas).
y . ~N(o,1) i.i.d Gaussian Step- i i+ 1 End? - Measurements: time series of n = 1200 points.
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i Lo Lo Lo wa mass centers.
© 5 10 150 20 2% 300 0 400 450 500 - Compute a low-rank principal subspace of input data. Chose S (posterior cingulate
wavelets of natural images: Newronal spike train with [ Results ] - Sample points from that subspace with appropriate weights. | cortex) and T (prefrontal cortex).
coefficients Lie on a tree refractoriness pertod A - Project each sample on the feasible set, and get a candidate solution. - Each layer is fully connected with
- Compare candidate solutions and output the best! ItS previous one.

[Baraniuk et al., 2008; Kyrillidis et al., 2014, Friedman et al., 2010, ...] Theorem 1: Lower Bound S Accuracy
Input: 3, Gle, r

Structure in sparse PCA [Jenatton et al., 2010] Opemte own para meters
G : given (p, k, d)-layer graph. (known) low rank  Multiple Choice PCA] O T )
, = ultiple Choice - .
[ (Sparse) PCA on graph path ] There exists signal x, supported on an st-path of G, such that: Approx. of LAput [y A SVD(Z, r) P 116 NOT£CT0 VAriable Tom Sath 9oUP
| If yq,...,y, is asequence of i.i.d. samples drawn from 2 — |z Example: S&P 500 Index
Idea: structure captured by underlying graph. N - V< QA Sample c; from S, = - Variables: stocks, conceptually divided into 10 business sectors (GICS)
e st - Dp(x4) = (O> L, + 5 x.x, ) | g’g - Measurements: prices over a period of 1259 days (5 years)
re: structure = graph pa | R Tallp x v w; «— Ve, S
- Underlying directed acyclic graph (7 on p vertices. Then, for any estimator x et weighted sample Proi (wo: G 6‘| §0¢§§ & & T8 Spavse PCA:
- Desired PC supported on variables that lie along a path. D (HAAT 5 XTH ) - 0 148 1 (10 L ko d) from principal x; <+ Proj(w;; G) = TS S & SR multiple stocks from
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Output best X < argmax |V ' x||2
2 ~ Theorem 2: Upper Bound candidate x€C : 1 stock frow each sector
\C O/ Active variables Form (p,k,d) layer graph:
@___’ > ’ on s~>t path G : given(p, k, d)-layer graph. (known) ' Projection step | - Layers correspond to GICS sectors. Arbitrary order.
o - All variables of a layer connected to all variables of next layer.
] - - X, : signal support on st-path of G. (unknown) | | | | |
Motivated by a neuroscience problem A N - Project a p-dimensional vector on the feasible set; i.e., the set of unit- ~ Compute PC along graph path!
- Bonus: Multiole Choice PCA Observe.seqeence Yi,.--,yYn ofi.id. samples. frem /\/'.(O, ), where norm vectors supported along an st-path of (G.
Variables divided in multiple groups; one active variable per group. > = 0 with eigenvalues A1 > A2 > ... and principal eigenvector X, . - Common step in both algorithms. O O O
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compare with O (k log k) Schware argmax w3 Longest (wetghted) path ) N Vertices correspond Graph Path PCA:

for the simple sparse PCA case path m ‘== problem on g, with G acyclic; to variables (stocks) Layers corvespond to one variable from
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X(G) ={x € R?: ||x]||3s = 1, (supp(x) C path of G}



