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TPower-based

Data generated according to the (p,k,d)-layer graph model. 
(p=1000, k=50, d=10 , 100 MC iterations)
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Sparse PCA: 
multiple stocks from  
few sectors

Graph Path PCA: 
1 stock from each sector

Example: S&P 500 Index  
- Variables: stocks, conceptually divided into 10 business sectors (GICS) 
- Measurements: prices over a period of 1259 days (5 years)

Spannogram-based

One non-zero variable from each group.
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Layers correspond to 
groups (GICS sectors)

Form (p,k,d) layer graph: 
- Layers correspond to GICS sectors. Arbitrary order. 
- All variables of a layer connected to all variables of next layer. 
Compute PC along graph path!

Graph Path PCA: 
one variable from  
each sector!

Vertices correspond 
to variables (stocks)

Algorithms

- Single-session/single-participant resting state fMRI dataset. 
- Variables: p = 111 Regions of Interest (HarvardOxford Atlas). 
- Measurements: time series of n = 1200 points.

(Human Connectome Project)

Construct Layered graph: 
- Based on Euclidean dist. of ROI 

mass centers. 
- Chose S (posterior cingulate 

cortex) and T (prefrontal cortex). 
- Each layer is fully connected with 

its previous one. 
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Stay on path: PCA along graph paths

– �out(S) = L1, and �out(v) = {T}, 8v 2 Lk.

In the sequel, for simplicity, we will further assume
that p� 2 is a multiple of k and |Li|= (p � 2)/k, 8i 2 [k].
Further, |�out(v)| = d, 8v 2 Li, i = 1, . . . , k � 1, and
|�in(v)| = d, 8v 2 Li, i = 2, . . . , k, where �in(v) denotes
the in-neighborhood of v. In words, the edges from one
layer are maximally spread accross the vertices of the next.
We refer to G as a (p, k, d)-layer graph.

Fig. 1 illustrates a (p, k, d)-layer graph G. The highlighted
vertices form an S-T path ⇡: a set of vertices forming a trail
from S to T . Let P(G) denote the collection of S-T paths
in a graph G for a given pair of source and terminal vertices.
For the (p, k, d)-layer graph, |⇡| = k, 8⇡ 2 P(G), and

|P(G)| = |L1| · dk�1
=

p�2
k · dk�1 

�

p�2
k

�

,

since d 2 {1, . . . , (p�2)/k}.

Spike along a path. We consider the spiked covariance
model, as in the sparse PCA literature (Johnstone & Lu,
2004; Amini & Wainwright, 2008). Besides sparsity, we
impose additional structure on the latent signal; structure
induced by a (known) underlying graph G.

Consider a p-dimensional signal x? and a bijective map-
ping between the p variables in x? and the vertices of G.
For simplicity, assume that the vertices of G are labeled so
that xi is associated with vertex i 2 V . We restrict x? in

X (G) ,
�

x2Rp
: kxk2 = 1, supp(x) 2 P(G)

 

,

that is, x? is a unit-norm vector whose active (nonzero)
entries correspond to vertices along a path in P(G).

We observe n points (samples) {yi}ni=1 2 Rp, generated
randomly and independently as follows:

yi =

p

� · ui · x? + zi, (5)

where the scaling coefficient ui ⇠ N (0, 1) and the additive
noise zi ⇠ N (0, Ip) are independent. Equivalently, yis are
i.i.d. samples, distributed according to N (0,⌃), where

⌃ = Ip + � · x?x
>
? . (6)

2.1. Lower bound

Theorem 1 (Lower Bound). Consider a (p, k, d)-layer
graph G on p vertices, with k � 4, and log d � 4H(

3/4).
(Note that p� 2 � k · d), and a signal x? 2 X (G). Let
{yi}ni=1 be a sequence of n random observations, inde-
pendently drawn according to probability density function

Dp(x?) = N
�

0, Ip + � · x?x
>
?

�

,

for some � > 0. Let D(n)
p (x?) denote the product measure

over the n independent draws. Consider the problem of es-
timating x? from the n observations, given G. There exists
x? 2 X (G) such that for every estimator bx,

ED(n)
p (x?)

⇥

kbxbx> � x?x
>
? kF

⇤

�

1
2
p
2
·
r

min

n

1, C0·(1+�)
�2 · 1

n

�

log

p�2
k +

k
4 log d

�

o

. (7)

Theorem 1 effectively states that for some latent sig-
nal x? 2 X (G), and observations generated according to
the spiked covariance model, the minimax error is bounded
away from zero, unless n = ⌦ (log

p/k + k log d). In the
sequel, we provide a sketch proof of Theorem 1, following
the steps of (Vu & Lei, 2012).

The key idea is to discretize the space X (G) in order to
utilize the Generalized Fano Inequality (Yu, 1997). The
next lemma summarizes Fano’s Inequality for the special
case in which the n observations are distibuted according
to the n-fold product measure D(n)

p (x?):
Lemma 2.1 (Generalized Fano (Yu, 1997)). Let
X✏ ⇢ X (G) be a finite set of points x1, . . . ,x|X✏| 2 X (G),
each yielding a probability measure D(n)

p (xi) on the n
observations. If d(xi,xj) � ↵, for some pseudo-metric1

d(·, ·) and the Kullback-Leibler divergences satisfy

KL

�

D(n)
p (xi) k D(n)

p (xj)
�

 �,

for all i 6= j, then for any estimator bx

max

xi2X✏

ED(n)
p (xi)

[d(bx,xi)] � ↵

2

·
✓

1� � + log 2

log |X✏|

◆

. (8)

Inequality (8), using the pseudo-metric

d (bx,x) , kbxbx> � xx

>kF,

will yield the desired lower bound of Theorem 1 on the
minimax estimation error (Eq. (7)). To that end, we need to
show the existence of a sufficiently large set X✏ ✓ X (G)

such that (i) the points in X✏ are well separated under d(·, ·),
while (ii) the KL divergence of the induced probability
measures is upper appropriately bounded.
Lemma 2.2. (Local Packing) Consider a (p, k, d)-layer
graph G on p vertices with k � 4 and log d � 4 ·H(

3/4).
For any ✏ 2 (0, 1], there exists a set X✏ ⇢ X (G) such that

✏/
p
2 < kxi � xjk2 

p
2 · ✏,

for all xi,xj 2 X✏, xi 6= xj , and

log |X✏| � log

p� 2

k
+

1/4 · k · log d.

1A pseudometric on a set X is a function d : Q2 ! R that sat-
isfies all properties of a distance (non-negativity, symmetry, trian-
gle inequality) except the identity of indiscernibles: d(q,q) = 0,
8q 2 Q but possibly d(q1,q2) = 0 for some q1 6= q2 2 Q.

Data samples generated according to the spiked covariance model, 
but signal supported supported along a path of G.

Gaussian  
noise (i.i.d)

~N(0,1) i.i.d

Signal, supported on path of G.
SNR

Observe n 
i.i.d. samples

Stay on path: PCA along graph paths
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Further, |�out(v)| = d, 8v 2 Li, i = 1, . . . , k � 1, and
|�in(v)| = d, 8v 2 Li, i = 2, . . . , k, where �in(v) denotes
the in-neighborhood of v. In words, the edges from one
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that is, x? is a unit-norm vector whose active (nonzero)
entries correspond to vertices along a path in P(G).

We observe n points (samples) {yi}ni=1 2 Rp, generated
randomly and independently as follows:

yi =
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� · ui · x? + zi, (5)
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i.i.d. samples, distributed according to N (0,⌃), where
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case in which the n observations are distibuted according
to the n-fold product measure D(n)
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will yield the desired lower bound of Theorem 1 on the
minimax estimation error (Eq. (7)). To that end, we need to
show the existence of a sufficiently large set X✏ ✓ X (G)

such that (i) the points in X✏ are well separated under d(·, ·),
while (ii) the KL divergence of the induced probability
measures is upper appropriately bounded.
Lemma 2.2. (Local Packing) Consider a (p, k, d)-layer
graph G on p vertices with k � 4 and log d � 4 ·H(

3/4).
For any ✏ 2 (0, 1], there exists a set X✏ ⇢ X (G) such that
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1A pseudometric on a set X is a function d : Q2 ! R that sat-
isfies all properties of a distance (non-negativity, symmetry, trian-
gle inequality) except the identity of indiscernibles: d(q,q) = 0,
8q 2 Q but possibly d(q1,q2) = 0 for some q1 6= q2 2 Q.

[ Synthetic ]

[ Neuroscience Data ]

[ Multiple Choice PCA ]

y1, . . . ,yn

b⌃(or      )
b
x

G = (V,E)

?

[ Algorithm 1 ]

Similar to Truncated Power Method for 
sparse PCA: 
- Initialize an estimate (e.g., randomly). 
- Multiply estimate with cov. matrix. 
- Project on feasible set to get new 

estimate. 
- Repeat.

Estimator

Side information 
/imposed structure

Input data

[ Algorithm 2 ]
- Compute a low-rank principal subspace of input data. 
- Sample points from that subspace with appropriate weights. 
- Project each sample on the feasible set, and get a candidate solution. 
- Compare candidate solutions and output the best!

{

Collect candidate

Weighted sample 
from principal  

subspace of input

Output best 
candidate

Tall p x r  
matrix

Input:
Accuracy  

parametersOperate on 
low rank  

approx. of input

“Subspace sample & project.”

“A Power Method-based approach.”

End?

b
x xi+1

init x0, i 0

Input:

wi  b
⌃xi

Power Iteration 
with projection  

step.

- Project a p-dimensional vector on the feasible set; i.e., the set of unit-
norm vectors supported along an st-path of    . 

- Common step in both algorithms.

[ Projection step ]

S

T

Due to  
Cauchy 

-Schwarz Longest (weighted) path  
problem on G, with  

special weights!
G acyclic;

Due to  the 
constraints.

Sparse PCA
[ (p,k,d)-layer graph G ]

[ Spike along a path ]

(Sparse) PCA on graph path

More structure...

Sparsity is Structure (a 0th order approximation)

Variables 

→ vertices

[Baraniuk et al., 2008; Kyrillidis et al., 2014, Friedman et al., 2010, …]

Wavelets of natural images: 
coefficients lie on a tree

Neuronal spike train with 
refractoriness period Δ

known graph

Why this graph? 
- Simple, but captures natural structures (e.g., a grid in 3D space). 
- Non-trivial: the quadratic maximization is NP-hard.

NP-hard

Why?

Find direction of maximum variance (similar to vanilla PCA), but  
Extracted feature is sparse: a linear combination of a few variables.

Extracted feature is more interpretable.
Hope for recovery of “true” PC in high-dimensions.[ Statistician ]

[ Engineer ]

Empirical covariance matrix

What if we know more (e.g., group sparsity, tree structures,…)?

Structure in sparse PCA [Jenatton et al., 2010]

Idea: structure captured by underlying graph.

S T

x1

x2

- Underlying directed acyclic graph       on p vertices. 
- Desired PC supported on variables that lie along a path.

- Motivated by a neuroscience problem
- Bonus: Multiple Choice PCA  

Variables divided in multiple groups; one active variable per group.

G

NP-Hard, 
in general

Results

Dp(x?) = N
�
0, Ip + � · x?x

>
?

�

Then, for any estimator bx

: given             -layer graph.  (known)(p, k, d)G

If y1, . . . ,yn is a sequence of i.i.d. samples drawn from

EDn
p (x?)
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>
? kF

�
O

✓q
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There exists signal x? Gsupported on an st-path of , such that:

Then,

Minimax errors bounded away  
from 0, unless                            . 

⌦

⇣
log
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k
+ k log d

⌘

Theorem 1: Lower Bound

where                                         . 

b
x

Compute estimator      by solving the constrained quadratic maximization 
on the empirical covariance     .b⌃

: given             -layer graph.  (known)(p, k, d)G

E
�
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? kF
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· 1
n
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np
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: signal support on st-path of     .x? G (unknown)

�1 > �2 � . . .⌃ ⌫ 0 with eigenvalues and principal eigenvector      .x?

N (0,⌃)y1, . . . ,yn of i.i.d. samples from Observe sequence , where

A = O
�
log

p
k + k log d

�

Compare with 
for the simple sparse PCA case

O
�
k log p

k

�

Theorem 2: Upper Bound

Graph Path 
PCA

Active variables 
on s⤳t path

RpObserve    samples in       and solve:n

Here: structure = graph path

Goal: Approximate the solution the NP-Hard constrained  
          quadratic maximization.

arg min
x2X (G)

kx�wk2


