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Sparse PCA

Sparse direction of

n observations / datapoints T2 | maximum variance
p variables
Find new variable (feature) that
captures most of the variance.
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Sparse PCA

Why sparsity?

| Engineer |  Extracted feature is more interpretable;
it depends on only a few original variables.

[ Statistician ] Recovery of “true” PC in high dimensions;
# observations << # variables.
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Sparse PCA

Why sparsity? More structure...?
| Engineer |  Extracted feature is more interpretable; More interpretable.
it depends on only a few original variables.
[ Statistician ] Recovery of “true” PC in high dimensions; Better sample complexity.

# observations << # variables.

E.q. wavelets of natural images, block structures, periodical neuronal spikes, ...
[Baraniuk et al., 2008; Kyrillidis et al., 2014, Friedman et al., 2010, ...]

e Structured sparse PCA [Jenatton et al., 2010] . . I I
g EE

- Sparsity-inducing norm

- 2D grid, rectangular nonzero patterns - - —
—




PCA On Graph Paths




Problem Definition

« Structure captured by an underlying graph.
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Problem Definition

« Structure captured by an underlying graph.
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PCA m;zxx X XX

subject to x € X(G)

X(G) ={x € R?: ||x]||s = 1{ supp(x) C path of G}
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Motivation 1: Neuroscience

- Variables: “voxels” (points in the brain)
- Measurements: blood-oxygen levels




Motivation 2: Finance

- Variables: stocks

- Measurements: prices over time
- Goal: Find subset that explains variance



Motivation 2: Finance

- Variables: stocks divided in sectors

- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector



Motivation 2: Finance

- Variables: stocks divided in sectors

- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector



Motivation 2: Finance

- Variables: stocks divided in sectors

- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector




Motivation 2: Finance

- Variables: stocks divided in sectors

- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector




Motivation 2: Finance

- Variables: stocks divided in sectors

- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector




Motivation 2: Finance

- Variables: stocks divided in sectors

- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector

7
7
0O+~ 000




Motivation 2: Finance

- Variables: stocks divided in sectors

- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector

O/
Oues =0 -
N\ AN

O -000




Motivation 2: Finance

- Variables: stocks divided in sectors

- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector

/O |/
Oues =0 -
N\ AN

O -000




Motivation 2: Finance

- Variables: stocks divided in sectors

- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector
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Statistical Analysis



Data model

(p,k,d)-layer graph
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Data model

(p,k,d)-layer graph
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Data model

(p,k,d)-layer graph Layer
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Data model

(p,k,d)-layer graph Layer
ln § out degree
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Spike along a path

Sawmples Yi = \/B cUj - Xy T+ Zy

Sigwnal, supported on path of G.



Boundas

[ Theorem 1 ]
G : (p, k,d)-layer graph (known). X, : signal support on st-path of G. (unknown)

Observe sequence Y1, ...,y of i.i.d. samples from N (0, - x*x;r + 1).
(0 max xSx )
yN—> X — X
subject to x € X(G)

Then, n = O (log % + k log d) samples suffice for recovery.
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[ Theorem 1 ]
G : (p, k,d)-layer graph (known). X, : signal support on st-path of G. (unknown)
Observe sequence yi, - - . .1.d. samplesfera=—r~0\Y, - Iy I
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for sparse PCA.

Then, n = 0(

[ Theorem 2 ]

That many samples are also necessary.




~ Algorithms



Algorithm

A Power Method-based approach.

Power lteration
with prqj ection
step.

Input: f), G
init xg,72 < 0
W, EAJXz-
X; 11 < Proj (Wi; G)

1<+—1+1

End?

X <— X541



' Projection Step |

Project a p-dimensional won X(G) = {x € R? : ||x||2 = 1, supp(x) C path of G}

Proj(w;G) = arg min_[|x — w||
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' Projection Step |

Project a p-dimensional won X (G) = {x € R? : ||x||s = 1, supp(x) C path of G}

Proj(w;G) = arg min_||x — w||o

xEX(Q) @
~(O)— ()
Due to the @ @ O/’
arg max (XTW)2

xcX(G) C)/V
Pue to @ O

cauwch Y

constraLnts.

-Schwarz argmax w2

path 7 ¢
1on T

Longest (wetghted) path I

problem on G, with . Joyclic \
special weights! o+ B )



Experiments



Synthetic

Data generated according to the (p,k,d)-layer graph model.
(b=1000, k=50, d=10, 100 MC iterations)
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Neurosclence

* Resting state fMRI dataset.”

* 111 regions of interest (ROIs) (variables),
extracted based on Harvard-Oxford
Atlas [Desikan et al., 2000].

* Graph extracted based on Euclidean
distances between center of mass of
ROls.

|dentified core neural components

of the brain’s memory network.

*[Human Connectome Project, WU-Minn Consortium]



Summary

* New problem: sparse PCA with support restricted on paths of DAGs.
e Statistical analysis

- Introduced a simple graph model.

- Side information (underlying graph) reduces statistical complexity.
* Approximation algorithms

- Projection step = Longest path on weighted graph.

[ Future ]

* Other combinatorial structures?
e Algorithm guarantees
* Neuroscience applications



