

Stay on path: PCA along graph paths

Megasthenis Asteris Anastasios Kyrillidis Alexandros Dimakis

Han - Gyol Yi Bharath Chandrasekaran Electrical and Computer Engineering

Communication Sciences and Disorders

n observations / datapoints p variables

Find new variable (feature) that captures most of the variance.

Why sparsity?

- →[Engineer] Extracted feature is more *interpretable*; it depends on only a few original variables.
- →[Statistician] Recovery of "true" PC in high dimensions; # observations << # variables.</p>

Why sparsity?

→[Engineer] Extracted feature is more *interpretable*; it depends on only a few original variables.

 \rightarrow [Statistician] Recovery of "true" PC in high dimensions; # observations << # variables.

More structure...?

→ More *interpretable*.

 \rightarrow Better sample complexity.

E.g. wavelets of natural images, block structures, periodical neuronal spikes, ...

[Baraniuk et al., 2008; Kyrillidis et al., 2014, Friedman et al., 2010, ...]

Why sparsity?

→[Engineer] Extracted feature is more *interpretable*; it depends on only a few original variables.

 \rightarrow [Statistician] Recovery of "true" PC in high dimensions; # observations << # variables.

More structure...?

→ More *interpretable*.

 \rightarrow Better sample complexity.

E.g. wavelets of natural images, block structures, periodical neuronal spikes, ...

[Baraniuk et al., 2008; Kyrillidis et al., 2014, Friedman et al., 2010, ...]

- Structured sparse PCA [Jenatton et al., 2010]
 - Sparsity-inducing norm
 - 2D grid, rectangular nonzero patterns

[PCA On Graph Paths]

Problem Definition

• Structure captured by an underlying graph.

Problem Definition

• Structure captured by an underlying graph.

Motivation 1: Neuroscience

- Variables: "voxels" (points in the brain)
- Measurements: blood-oxygen levels

Motivation 1: Neuroscience

- Variables: "voxels" (points in the brain)
- Measurements: blood-oxygen levels

- Variables: stocks
- Measurements: prices over time
- Goal: Find subset that explains variance

- Variables: **stocks divided in sectors**
- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector

- Variables: **stocks divided in sectors**
- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector

- Variables: **stocks divided in sectors**
- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector

- Variables: stocks divided in sectors
- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector

- Variables: stocks divided in sectors
- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector

- Variables: stocks divided in sectors
- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector

- Variables: **stocks divided in sectors**
- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector

- Variables: stocks divided in sectors
- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector

- Variables: stocks divided in sectors
- Measurements: prices over time
- Goal: Find subset that explains variance 1 stock/ sector

[Statistical Analysis]

(p,k,d)-layer graph

(p,k,d)-layer graph

[Theorem 1]

G: (p, k, d)-layer graph (known). \mathbf{x}_{\star} : signal support on st-path of G. (unknown) Observe sequence $\mathbf{y}_1, \ldots, \mathbf{y}_n$ of i.i.d. samples from $\mathcal{N}(\mathbf{0}, \ \beta \cdot \mathbf{x}_{\star} \mathbf{x}_{\star}^{\top} + \mathbf{I})$.

$$\widehat{\Sigma} \longrightarrow \left(\begin{array}{c} \max_{\mathbf{x}} & \mathbf{x}^{\top} \widehat{\Sigma} \mathbf{x} \\ \text{subject to} & \mathbf{x} \in \mathcal{X}(G) \end{array} \right) \xrightarrow{\mathbf{x}} \widehat{\mathbf{x}}$$

Then, $n = O\left(\log \frac{p}{k} + k \log d \right)$ samples suffice for recovery.

[Theorem 1]

G: (p, k, d)-layer graph (known). \mathbf{x}_{\star} : signal support on st-path of G. (unknown) Observe sequence $\mathbf{y}_1, \ldots, \mathbf{y}_n$ of i.i.d. samples from $\mathcal{N}(\mathbf{0}, \ \beta \cdot \mathbf{x}_{\star} \mathbf{x}_{\star}^{\top} + \mathbf{I})$.

[Theorem 1]

G: (p, k, d)-layer graph (known). \mathbf{x}_{\star} : signal support on st-path of G. (unknown) Observe sequence $\mathbf{y}_1, \ldots, \mathbf{y}_n$ of i.i.d. samples from $\mathcal{N}(\mathbf{0}, \ \beta \cdot \mathbf{x}_{\star} \mathbf{x}_{\star}^{\top} + \mathbf{I})$.

[Theorem 2]

That many samples are also **necessary**.

[Theorem 1]

G: (p, k, d)-layer graph (known). \mathbf{x}_{\star} : signal support on st-path of G. (unknown) Observe sequence $\mathbf{y}_1, \ldots, \mathbf{y}_n$ of i.i.d. samples from $\mathcal{N}(\mathbf{0}, \beta \cdot \mathbf{x}_{\star} \mathbf{x}_{\star}^{\top} + \mathbf{I})$.

$$\widehat{\Sigma} \xrightarrow{\qquad max \qquad \mathbf{x}^{\top} \widehat{\Sigma} \mathbf{x}}_{\text{subject to } \mathbf{x} \in \mathcal{X}(G)} \xrightarrow{\qquad \widehat{\mathbf{x}}} \widehat{\mathbf{x}} \mathbf{NP-HARD}$$
Then, $n = O\left(\log \frac{p}{k} + k \log d\right)$ samples suffice for recovery.
$$\bigvee S \quad \Omega\left(k \log \frac{p}{k}\right)_{\text{for sparse PCA.}}$$

[Theorem 2]

That many samples are also **necessary**.

[Algorithms]

Algorithm 1

A Power Method-based approach.

$$\operatorname{Proj}(\mathbf{w}; G) = \arg\min_{\mathbf{x} \in \mathcal{X}(G)} \|\mathbf{x} - \mathbf{w}\|_{2}$$

$$\begin{aligned} \operatorname{Proj}(\mathbf{w}; G) &= \arg\min_{\mathbf{x} \in \mathcal{X}(G)} \|\mathbf{x} - \mathbf{w}\|_{2} \\ \\ \text{Due to the constraints.} \\ \arg\max_{\mathbf{x} \in \mathcal{X}(G)} (\mathbf{x}^{\mathsf{T}} \mathbf{w})^{2} \end{aligned}$$

[Experiments]

Synthetic

Data generated according to the (p,k,d)-layer graph model. (p=1000, k=50, d=10, 100 MC iterations)

Neuroscience

- Resting state fMRI dataset.*
- 111 regions of interest (ROIs) (variables), extracted based on Harvard-Oxford Atlas [Desikan et al., 2006].
- Graph extracted based on Euclidean distances between center of mass of ROIs.

Identified core neural components of the brain's memory network.

Summary

- New problem: sparse PCA with support restricted on paths of DAGs.
- Statistical analysis
 - Introduced a simple graph model.
 - Side information (underlying graph) reduces statistical complexity.
- Approximation algorithms
 - Projection step \rightarrow Longest path on weighted graph.

[Future]

- Other combinatorial structures?
- Algorithm guarantees
- Neuroscience applications