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Sparse PCA
Extracted feature is more interpretable; 
it depends on only a few original variables.
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Better sample complexity.

[Baraniuk et al., 2008; Kyrillidis et al., 2014, Friedman et al., 2010, …]

E.g. wavelets of natural images, block structures, periodical neuronal spikes, …
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Extracted feature is more interpretable; 
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[ Engineer ]

Why sparsity? More structure…?

More interpretable.

Better sample complexity.

[Baraniuk et al., 2008; Kyrillidis et al., 2014, Friedman et al., 2010, …]

E.g. wavelets of natural images, block structures, periodical neuronal spikes, …

• Structured sparse PCA    [Jenatton et al., 2010] 
- Sparsity-inducing norm 
- 2D grid, rectangular nonzero patterns



[ PCA On Graph Paths ]
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Stay on path: PCA along graph paths

– �out(S) = L1, and �out(v) = {T}, 8v 2 Lk.

In the sequel, for simplicity, we will further assume
that p� 2 is a multiple of k and |Li|= (p � 2)/k, 8i 2 [k].
Further, |�out(v)| = d, 8v 2 Li, i = 1, . . . , k � 1, and
|�in(v)| = d, 8v 2 Li, i = 2, . . . , k, where �in(v) denotes
the in-neighborhood of v. In words, the edges from one
layer are maximally spread accross the vertices of the next.
We refer to G as a (p, k, d)-layer graph.

Fig. 1 illustrates a (p, k, d)-layer graph G. The highlighted
vertices form an S-T path ⇡: a set of vertices forming a trail
from S to T . Let P(G) denote the collection of S-T paths
in a graph G for a given pair of source and terminal vertices.
For the (p, k, d)-layer graph, |⇡| = k, 8⇡ 2 P(G), and

|P(G)| = |L1| · dk�1
=

p�2
k · dk�1 

�

p�2
k

�

,

since d 2 {1, . . . , (p�2)/k}.

Spike along a path. We consider the spiked covariance
model, as in the sparse PCA literature (Johnstone & Lu,
2004; Amini & Wainwright, 2008). Besides sparsity, we
impose additional structure on the latent signal; structure
induced by a (known) underlying graph G.

Consider a p-dimensional signal x? and a bijective map-
ping between the p variables in x? and the vertices of G.
For simplicity, assume that the vertices of G are labeled so
that xi is associated with vertex i 2 V . We restrict x? in

X (G) ,
�

x2Rp
: kxk2 = 1, supp(x) 2 P(G)

 

,

that is, x? is a unit-norm vector whose active (nonzero)
entries correspond to vertices along a path in P(G).

We observe n points (samples) {yi}ni=1 2 Rp, generated
randomly and independently as follows:

yi =

p

� · ui · x? + zi, (5)

where the scaling coefficient ui ⇠ N (0, 1) and the additive
noise zi ⇠ N (0, Ip) are independent. Equivalently, yis are
i.i.d. samples, distributed according to N (0,⌃), where

⌃ = Ip + � · x?x
>
? . (6)

2.1. Lower bound

Theorem 1 (Lower Bound). Consider a (p, k, d)-layer
graph G on p vertices, with k � 4, and log d � 4H(

3/4).
(Note that p� 2 � k · d), and a signal x? 2 X (G). Let
{yi}ni=1 be a sequence of n random observations, inde-
pendently drawn according to probability density function

Dp(x?) = N
�

0, Ip + � · x?x
>
?

�

,

for some � > 0. Let D(n)
p (x?) denote the product measure

over the n independent draws. Consider the problem of es-
timating x? from the n observations, given G. There exists
x? 2 X (G) such that for every estimator bx,

ED(n)
p (x?)

⇥

kbxbx> � x?x
>
? kF

⇤

�

1
2
p
2
·
r

min

n

1, C0·(1+�)
�2 · 1

n

�

log

p�2
k +

k
4 log d

�

o

. (7)

Theorem 1 effectively states that for some latent sig-
nal x? 2 X (G), and observations generated according to
the spiked covariance model, the minimax error is bounded
away from zero, unless n = ⌦ (log

p/k + k log d). In the
sequel, we provide a sketch proof of Theorem 1, following
the steps of (Vu & Lei, 2012).

The key idea is to discretize the space X (G) in order to
utilize the Generalized Fano Inequality (Yu, 1997). The
next lemma summarizes Fano’s Inequality for the special
case in which the n observations are distibuted according
to the n-fold product measure D(n)

p (x?):
Lemma 2.1 (Generalized Fano (Yu, 1997)). Let
X✏ ⇢ X (G) be a finite set of points x1, . . . ,x|X✏| 2 X (G),
each yielding a probability measure D(n)

p (xi) on the n
observations. If d(xi,xj) � ↵, for some pseudo-metric1

d(·, ·) and the Kullback-Leibler divergences satisfy

KL

�

D(n)
p (xi) k D(n)

p (xj)
�

 �,

for all i 6= j, then for any estimator bx

max

xi2X✏

ED(n)
p (xi)

[d(bx,xi)] � ↵

2

·
✓

1� � + log 2

log |X✏|

◆

. (8)

Inequality (8), using the pseudo-metric

d (bx,x) , kbxbx> � xx

>kF,

will yield the desired lower bound of Theorem 1 on the
minimax estimation error (Eq. (7)). To that end, we need to
show the existence of a sufficiently large set X✏ ✓ X (G)

such that (i) the points in X✏ are well separated under d(·, ·),
while (ii) the KL divergence of the induced probability
measures is upper appropriately bounded.
Lemma 2.2. (Local Packing) Consider a (p, k, d)-layer
graph G on p vertices with k � 4 and log d � 4 ·H(

3/4).
For any ✏ 2 (0, 1], there exists a set X✏ ⇢ X (G) such that

✏/
p
2 < kxi � xjk2 

p
2 · ✏,

for all xi,xj 2 X✏, xi 6= xj , and

log |X✏| � log

p� 2

k
+

1/4 · k · log d.

1A pseudometric on a set X is a function d : Q2 ! R that sat-
isfies all properties of a distance (non-negativity, symmetry, trian-
gle inequality) except the identity of indiscernibles: d(q,q) = 0,
8q 2 Q but possibly d(q1,q2) = 0 for some q1 6= q2 2 Q.

Gaussian  
noise (i.i.d)

Signal, supported on path of G.

Samples

Spike along a path
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Algorithms



Algorithm 1
A Power Method-based approach.

End?

b
x xi+1

init x0, i 0

Input:

wi  b
⌃xi

Power Iteration 
with projection  

step.
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[ Projection Step ]

S T

Due to  
Cauchy 

-Schwarz

Longest (weighted) path  
problem on G, with  

special weights!
G acyclic;

Due to  the 
constraints.

arg min
x2X (G)

kx�wk2

Project a p-dimensional     onw



[ Experiments ]



Synthetic
Data generated according to the (p,k,d)-layer graph model. 
(p=1000, k=50, d=10 , 100 MC iterations)

Samples n
1000 2000 3000 4000 5000

kb x
b x>
!

x
x

>
k F

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Trunc. Power M.
Span. k-sparse
Graph Power M.
Low-D Sampling



• Resting state fMRI dataset.* 
• 111 regions of interest (ROIs) (variables), 

extracted based on Harvard-Oxford 
Atlas [Desikan et al., 2006].  

• Graph extracted based on Euclidean 
distances between center of mass of 
ROIs.

*[Human Connectome Project, WU-Minn Consortium]

Neuroscience

Identified core neural components  
of the brain’s memory network.



Summary
• New problem: sparse PCA with support restricted on paths of DAGs. 
• Statistical analysis 

- Introduced a simple graph model. 
- Side information (underlying graph) reduces statistical complexity. 

• Approximation algorithms 
- Projection step → Longest path on weighted graph.

• Other combinatorial structures? 
• Algorithm guarantees 
• Neuroscience applications

[ Future ]


