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Distributed Storage

Cluster of machines running Hadoop at Yahoo! (Source: Yahoo!)

* Failures are the norm.
* We need to protect the data: Introduce redundancy
 Already using Erasure Codes (e.g. Reed Solomon)



Problem Description

Create a linear code with the following properties:

» Systematic form
Input is part of the output



Problem Description

* Rateless property
Columns created independently



Problem Description

* MDS property = un
Any k columns are full rank " " ‘ # 0
G B H EN
B B
H N |
B B
| H N B
4




Problem Description

* Good Locality
A column is a linear combination
of at most | other columns.
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Problem Description

Summarizing...

» Systematic form

- Rateless property

* MDS property

» Good Locality



Approach

» Systematic
+

» Sparse Parities

» Good Locality

» Sparsity is a measure of locality:
The sparser the parities the better
the locallity.

a How sparse can parities be?
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Approach

However...
» Systematic MDS codes can afford
no zero in the parity columns.

 MDS cannot have Sparse Parities.

» Relax MDS property:
* (1+€) k symbols should suffice
for decoding.



Approach

In light of the observations, we want:

» Systematic

* Rateless

*Sparse Parities

* MDS-property

(1+¢€)k suffice for decoding
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—— Fountain Codes

€ should be arbitrarily small.
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Prior work

 [Shokrollahi] -Raptor Codes

- Systematic version N
- Parities no longer sparse in the input N

» [Gummadi]- Systematic LT/Raptor codes — € cannot be arbitrarily small.



Our construction
Q e k input symbols

e Systematic part

For each parity:

- Choose d(k) symbols.
- Choose ¢;; ~ U|0...q)
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How small can the degree
d(k), of the encoded
symbols be?




Results

Decoding w.h.p.
=
d(k) = Q(In(k))

Coupon Collector

d(k) =cln (k) (coxc1/e)
=
(1 4 €) kK random columns
of G are lin. indep.
w.p. k/q close to 1.




Proving Theorem 2

. (14 €)k N
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*Analyze the rank of a random matrix.

 But here, we have an arbitrary number of systematic columns
and a random part (parities)

[Kovalenko & Levitskaya, Cooper, Karp, ....]



Proof — Part 1

* Focus on k x k submatrix.

* Full rank corresponds to a
perfect matching on bipartite
graph

*(whp using Edmond’s
theorem and Schwartz-Zippel

[ Ho et al. ]
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Proof — Part 2

Key technical result:
- There is a perfect matching whp.

- Erdos-Reyni Random matrix result, Hall's marriage theorem, first
moment method.



Conclusions

« We introduced a new family of fountain codes:
— Systematic
— Near MDS

— With logarithmic locality (easy repair of a single
symbol failure - very useful in distributed storage
systems)

« Our proof involved analyzing a new family of
random matrices.

* An interesting open problem: can we use belief
propagation decoding for this ensemble?
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Simulation

Pr(decoding) vs kK (R =0.5,¢c =5)
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