
Repairable Fountain Codes 

Megasthenis Asteris 
Alex Dimakis 



Distributed Storage 

Cluster of machines running Hadoop at Yahoo! (Source: Yahoo!) 

•  Failures are the norm.  
•  We need to protect the data: Introduce redundancy 
•  Already using Erasure Codes (e.g. Reed Solomon) 



Problem Description 

•  Systematic form 
 Input is part of the output 

Create a linear code with the following properties: 



Problem Description 

•  Rateless property 
Columns created independently 
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Problem Description 

•  MDS property 
 Any k columns are full rank �= 0

�= 0



Problem Description 

•  Good Locality 
 A column is a linear combination 

of at most l other columns. 
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Problem Description 

•  Systematic form 

•  Rateless property 

•  MDS property 

•  Good Locality 

Summarizing… 
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Approach 
•  Systematic  

•  Sparsity is a measure of locality: 
 The sparser the parities the better 

the locality. 

Q How sparse can parities be? 

•  Sparse Parities 

•  Good Locality 
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Approach 

However... 
•  Systematic MDS codes can afford 
no zero in the parity columns.  

•  MDS cannot have Sparse Parities. 

•  Relax MDS property: 
•  (1+ε) k symbols should suffice 
for decoding. 



Approach 

•  Systematic 

•  Rateless 

•   MDS property  
(1+ε)k suffice for decoding 

Fountain Codes 

ε should be arbitrarily small. 

• Sparse Parities  

In light of the observations, we want: 
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Prior work 

•  [Gummadi]– Systematic LT/Raptor codes – ε cannot be arbitrarily small. 

•  [Shokrollahi] -Raptor Codes 

- Systematic version  
- Parities no longer sparse in the input 



Our construction 

...d(k)

...

...
ik

j

×ci,j

...

...
i

• k input symbols

• Systematic part

• For each parity:

- Choose d(k) symbols.

- Choose cij ∼ U [0 . . . q)

How small can the degree  
d(k), of the encoded 
symbols be? 



Results 
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d(k) = c ln (k) (c ∝ 1/�)

⇒
(1 + �) k random columns

of G are lin. indep.
w.p. k/q close to 1.

Theorem 2 

Decoding w.h.p.
⇒

d(k) = Ω (ln (k))

Theorem 1 

Coupon Collector



Proving Theorem 2 

[Kovalenko & Levitskaya, Cooper, Karp, …. ] 

• Analyze the rank of a random matrix. 

•  But here, we have an arbitrary number of systematic columns 
and a random part (parities) 

(1 + �)k



Proof – Part 1 

No

rank(GK) < k

Yes

Yes No rank(GK) = kBad Coeffs?

∃M?

•  Focus on k x k submatrix. 

•  Full rank corresponds to a 
perfect matching on bipartite 
graph  

• (whp using Edmond’s 
theorem and Schwartz-Zippel 

[ Ho et al. ] 

Schwart-Zippel



Proof – Part 2 

- Erdos-Reyni Random matrix result, Hall’s marriage theorem, first 
moment method. 

Key technical result:  
- There is a perfect matching whp. 



Conclusions 
•  We introduced a new family of fountain codes: 

–  Systematic 
–  Near MDS 
–  With logarithmic locality (easy repair of a single 

symbol failure - very useful  in distributed storage 
systems) 

•  Our proof involved analyzing a new family of 
random matrices. 

•  An interesting open problem: can we use belief 
propagation decoding for this ensemble? 



Simulation 
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