Repairable Fountain Codes

Megasthenis Asteris
Alex Dimakis
Distributed Storage

Cluster of machines running Hadoop at Yahoo! (Source: Yahoo!)

• Failures are the norm.
• We need to protect the data: Introduce redundancy
• Already using Erasure Codes (e.g. Reed Solomon)
Problem Description

Create a linear code with the following properties:

- **Systematic** form

 Input is part of the output
Problem Description

- **Rateless** property

 Columns created independently
Problem Description

- **MDS property**

 Any k columns are full rank
Problem Description

• Good **Locality**
 A column is a linear combination of at most l other columns.
Problem Description

Summarizing…

- **Systematic** form
- **Rateless** property
- **MDS** property
- Good **Locality**
Approach

• **Systematic**
 +
• **Sparse Parities**
 =
• **Good Locality**

• **Sparsity** is a measure of **locality**:
 The sparser the parities the better the locality.

Q How sparse can parities be?
Approach

However...

- **Systematic MDS** codes can afford no zero in the parity columns.

- MDS cannot have **Sparse Parities**.

- Relax MDS property:
 - $(1+\varepsilon)k$ symbols should suffice for decoding.
Approach

In light of the observations, we want:

• **Systematic**
• **Rateless**
• **Sparse Parities**
• **MDS property**

 \[(1+\varepsilon)k \text{ suffice for decoding}\]

\(\varepsilon\) should be arbitrarily small.
Prior work

- [Shokrollahi] - Raptor Codes
 - Systematic version
 - Parities no longer sparse in the input

- [Gummadi] - Systematic LT/Raptor codes – ϵ cannot be arbitrarily small.
Our construction

- \(k\) input symbols
- Systematic part
- For each parity:
 - Choose \(d(k)\) symbols.
 - Choose \(c_{i,j} \sim U[0\ldots q)\)

How small can the degree \(d(k)\), of the encoded symbols be?
Results

Theorem 1
Decoding \textit{w.h.p.}
\[d(k) = \Omega(\ln(k)) \]

Coupon Collector

Theorem 2
\[d(k) = c \ln(k) \quad (c \propto 1/\epsilon) \]
\[(1 + \epsilon)k \text{ random columns of } G \text{ are lin. indep. w.p. } k/q \text{ close to 1.} \]
• Analyze the rank of a random matrix.

• But here, we have an arbitrary number of systematic columns and a random part (parities)

[Kovalenko & Levitskaya, Cooper, Karp,]
Proof – Part 1

• Focus on $k \times k$ submatrix.

• Full rank corresponds to a perfect matching on bipartite graph

• (whp using Edmond’s theorem and Schwartz-Zippel)

[Ho et al.]
Proof – Part 2

Key technical result:
- There is a perfect matching whp.

- Erdos-Reyni Random matrix result, Hall’s marriage theorem, first moment method.
Conclusions

• We introduced a new family of fountain codes:
 – Systematic
 – Near MDS
 – With logarithmic locality (easy repair of a single symbol failure - very useful in distributed storage systems)

• Our proof involved analyzing a new family of random matrices.

• An interesting open problem: can we use belief propagation decoding for this ensemble?
Simulation

Pr(decoding) vs k ($R = 0.5, c = 5$)

$\epsilon, q = 0.01, 17$

$\epsilon, q = 0.13, 17$

$\epsilon, q = 0.25, 17$

$\epsilon, q = 0.01, 113$