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| Orthogonal NMF |

Given a nonnegative m x n matrix M and a target dimension k < m.,n

approximate Mby the product of an m X k nonnegative matrix W
with orthogonal columns, and an n X k nonnegative matrix H, i.e.,
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Sparse, part-based representations.

- Clustering: W is as a cluster membership matrix, H corresponds to
the k cluster centroids [Ding 2006, Li 2006, Pompili 2012]

Text analysis: M is a words by documents matrix, and the
orthogonal columns W can be interpreted as topics defined by
disjoint subsets of words.

| Connections to Nonnegative PCA |

If an oracle reveals W >0 then H=M'W > 0.

By construction:
By assumption nonnegative orthogonal columus +

nonnegative

(ONMPF) reduces to:

(NNPCA)
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- Seek k orthogonal and nonnegative components that jointly
maximize the explained variance on the (centered) data M.

- Defined for arbitrary matrix M (not necessarily nonnegative).
- NP hard even for k=1 (single component NNPCA).

| Contributions |

- Novel approximation algorithm for ONMF with provable guarantees.
- Strictly satisfies both nonnegativity and orthogonality.

- Relies on novel approximation algorithm for NNPCA.
(No assumption on NNPCA input — not even nonnegativity).

[ Our NNPCA Algorithm |

— For now, think

Input: m x n matrix M with rank(M) =r r << m,n
Objective: (approximately) solve
W, = arg max HMTWH ()
Wew,y
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Input matrix can be decomposedas M = U/ /| vT | and
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Fix the value of the r x k variable C. Let A « UXC
m x k

Easy fo solve. -
How? (almost)
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r x k variable.

= Low rank NNPCA reduces to finding the best C

—1 Algorithm: Low Rank NNPCA|

(smaller Hhan W)

max (w;, USc; )"

Input: m X n rank-r matrix M
- Initialize empty collection §

- U, X%,V + SVD(M)
- Fori=1:0((1/9"")
[ Sample C (v x k variable. Each column (s unit-norim)

Compute A «+— UXC
Solve

(Truncated SVD)

| Add W to the collection S.
Output: W best solution in collection S.
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Theorem: Low Rank NNPCA

Input: i) m X n rank-r matrix M, 4i) k: desired # of components,
i11) accuracy € € (0,1).

Output: W € W, such that

IMW]|% > (1—¢)-OPT,

in time TSVD(T) + O ((%)rk k- m)

- First algorithm for multi-component NNPCA.
- Provable approximation guarantees.
- Complexity:
- Low-order polynomial in the ambient dimension (m, n)

- Exponential in the intrinsic dimension r.
Separates ambient and

Too high?

infrinsic dimension.

| Algorithm: NNPCA |
Solve NNPCA on

E.9., exact or

approx. SVD rank v matrix
M Low rank Vi (Low rank) W
AppProx. NNPCA
m X n M x m x K

rank v < ,n Nounnegative,
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Theorem: NNPCA

Input: i) m x n matrix M,
i1) k: desired # of components, 7ii) accuracy € € (0,1).
iv) rank-r approximation M

Output: W € W, such that
IMW]||% > (1—¢)-OPT — k- [M - M]3,

r-k

in time TSVD(T)—l—O((%) km)
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| In Practice |

- Taking too long?

- Run our algorithm and stop it any time.
— |gnore the theoretical guarantees
— Still finds solutions with higher explained variance,
compared to deflation based methods.

Example: CBCL dataset [Sung1996}
2429 19 x19 pixel, gray scale face images.
- Computes k=8 components
- Compare to deflation methods using solvers for the single

component NNPCA problem. [Zass: 2007, Sigg 2008, Asteris 2014]
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[ Our ONMF Algorithm |

Use the NNPCA algorithm to approximately solve the ONMF problem.

- Compare with several algos:

Theorem: ONMFE

Our ONMF algorithm outputs an m x k matrix W (nonnegative,
orthogonal), and an n x k matrix H (nonnegative), such that

IM - WH' |5 < & +e- [M]|7

in time Tsyp(¥) + 0((%)’*2/6 (k).

Additive guarantee

on relative frob. error

- First algorithm for ONMF with provable approximation guarantees.

- No assumption on input (beyond nonnegativity).
No generative model.

- Qutput strictly satisfies requirements (nonnegativilty, orthogonality)
- Complexity: Low-order polynomial in the ambient dimension (m, n)

- For constant target dimension k: additive Efficient Polynomial
Approximation Scheme (EPTAS) on the relative Frobenius error.

[ In Practice |

(Similar to NNPCA... )

- Run the NNPCA solver on an arbitrary low rank approximation.
- Stop any time, ignoring the theoretical guarantees.
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Example: Synthetic gimﬁan; 1T
p- K-means
- Generate nonnegative data ~ 02l | 5 onenE
. EM-ONMF
close to ONMF + noise. —5— ONMFS

o
—
)

O-PNMF [Yang 2010],
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