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Theorem: Low Rank NNPCA
Input: i) m ⇥ n rank-r matrix M, ii) k: desired # of components,

iii) accuracy ✏ 2 (0, 1).

Output: W 2 Wk such that

kMWk2F � (1� ✏) · OPT,

in time TSVD(r) +O
⇣�

2
✏

�r·k · k ·m
⌘
.

Theorem: NNPCA
Input: i) m⇥ n matrix M,

ii) k: desired # of components, iii) accuracy ✏ 2 (0, 1).
iv) rank-r approximation M

Output: W 2 Wk such that

kMWk2F � (1� ✏) · OPT� k · kM�Mk22,

in time TSVD(r) +O
⇣�

2
✏

�r·k · k ·m
⌘
.

- First algorithm for multi-component NNPCA. 
- Provable approximation guarantees. 
- Complexity:  

- Low-order polynomial in the ambient dimension (m, n) 
- Exponential in the intrinsic dimension r.

(ONMF)

Orthogonal NMF through Subspace Exploration
Megasthenis Asteris, Dimitris Papailiopoulos, Alex Dimakis

[ Orthogonal NMF ]

[ In Practice ]
- Taking too long? 
- Run our algorithm and stop it any time. 
→ Ignore the theoretical guarantees 
→ Still finds solutions with higher explained variance, 
     compared to deflation based methods.

Example: CBCL dataset [Sung1996} 
                 2429  19 x19 pixel, gray scale face images. 
- Computes k=8 components 
- Compare to deflation methods using solvers for the single  

component NNPCA problem. [Zass:2007, Sigg 2008, Asteris 2014]

[ Our NNPCA Algorithm ]

Observation I

Observation II

V>=

Fix the value of the          variable    .  Let                  .r ⇥ k C

⇒ Low rank NNPCA reduces to finding the best C
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Given a nonnegative            matrix      and a target dimension 
approximate     by the product of an            nonnegative matrix       
with orthogonal columns, and an           nonnegative matrix    , i.e.,

m⇥ n M k ⌧ m,n
m⇥ kM W

Hn⇥ k

As an optimization:

M ⇡
W H>

p (Noise power)
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Sparse, part-based representations. 
- Clustering: W is as a cluster membership matrix, H corresponds to 

the k cluster centroids [Ding 2006, Li 2006, Pompili 2012] 
- Text analysis: M is a words by documents matrix, and the 

orthogonal columns W can be interpreted as topics defined by 
disjoint subsets of words. 

[ Connections to Nonnegative PCA ]

(ONMF) reduces to:

If an oracle reveals               then                           .H = M>W � 0W � 0

- Seek k orthogonal and nonnegative components that jointly  
maximize the explained variance on the (centered) data M. 

- Defined for arbitrary matrix M (not necessarily nonnegative). 
- NP hard even for k=1 (single component NNPCA).

- Novel approximation algorithm for ONMF with provable guarantees. 
- Strictly satisfies both nonnegativity and orthogonality. 
- Relies on novel approximation algorithm for NNPCA.  

(No assumption on NNPCA input — not even nonnegativity).

W? = arg max

W2Wk

kM>
Wk.

Objective: (approximately) solve

kM>
Wk2F = k⌃U

>
Wk2F =

kX

j=1

k⌃U
>
wjk22 =

kX

j=1

max

cj2Sr�1
2

⌦
wj , U⌃cj

↵2

Input matrix can be decomposed as                                        andU ⌃M

(✳)

A U⌃C

⇒ (✳) can be written as joint maximization over      and     W C

A

[                  ]cW = arg max

W2Wk

kX

j=1

hwj , aji2

cW

Input:             rank-    matrix  
- Initialize empty collection       
-                                                    (Truncated SVD) 
- For  

 Sample  
 Compute 
 Solve 

 Add      to the collection    . 
Output:       best solution in collection    .

r

i = 1 : O
⇣
(4/✏)r·k

⌘
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[ Algorithm: Low Rank NNPCA]
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[ Algorithm: NNPCA ]

[ Our ONMF Algorithm ]

Input:             nonnegative matrix  
              : inner dimension of factorization  
              : accuracy parameter 

Output: Pair      ,

[ Algorithm: ONMF ]

m⇥ n M
k
✏

k ✏

W

H M>W

r = dk/✏e

[ Contributions ]

Input:            matrix       with Mm⇥ n Use the NNPCA algorithm to approximately solve the ONMF problem.

(Low rank) 
NNPCA

Truncated 
SVD

W

MM

 

H

Theorem: ONMF
Our ONMF algorithm outputs an m ⇥ k matrix W (nonnegative,
orthogonal), and an n⇥ k matrix H (nonnegative), such that

kM�WH>k2F  E? + ✏ · kMk2F

in time TSVD(
k
✏ ) +O

⇣�
1
✏

�k2/✏ · (k ·m)
⌘
.

[ In Practice ]

- Run the NNPCA solver on an arbitrary low rank approximation. 
- Stop any time, ignoring the theoretical guarantees.

Example: Synthetic 
- Generate nonnegative data ~ 

close to ONMF + noise. 
- Compare with several algos: 

O-PNMF [Yang 2010],  
ONP-MF, EM-ONMF [Pompili 
2012, 2013], k-means, 
spherical k-means

(Similar to NNPCA… )

- First algorithm for ONMF with provable approximation guarantees. 
- No assumption on input (beyond nonnegativity).  

No generative model.  
- Output strictly satisfies requirements (nonnegativilty, orthogonality) 
- Complexity: Low-order polynomial in the ambient dimension (m, n) 
- For constant target dimension k: additive Efficient Polynomial 

Approximation Scheme (EPTAS) on the relative Frobenius error.

subject to: W � 0, H � 0

W>W = Ik

min
W,H

kM�WH>k2F

max

W2Wk

kM>Wk2F

rank(M) = r r ⌧ m,n


