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| Sparse PCA |

Given a covariance matrix A, find direction of maximum variance, as
a linear combination of only a few variables:

Empirical Covartance

X, = arg ;neaf(c (XTAX) A X

X ={xeR: |x|l, = 1(|x[lo = s}

Sparse vector

(NP-hard)
| Multiple Sparse Components |
Find multiple sparse components L - ry <
with disjoint support sets:
(MultiSPCA) X, = arg max TR(X ' AX)

ReXk Sparse columms

b JXERPE X = 1L ([X o = 5, V]
L = . ,
supp(X") Nsupp(X?) =0, Vi, j

Disjoint support sets

Example: NY Times text corpus
- Find 8 components, each 10-sparse.
- Sparse disjoint components interpreted as distinct topics.

Topic1  Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
|: percent zzz.united._states zzz_bush company  team cup school  zzz_al gore
2. million  zzz.u.s official companies game minutes student  zzz_george _bush
3: money  zzz.american government market season add children campaign
i: high attack president stock player tablespoon women election
5. program military group business play oil show plan
6: number  palestinian leader billion point teaspoon  book tax
7: need war country analyst run water family  public
8: part administration political firm right pepper look zzz._washington
9: problem zzz _white_house american sales home large hour member
10: com games law cost won food small nation
| One approach: Deflation |
Compute Components one—by—one.
- Compute one sparse PC. Cmnple but
: tmple bu
- Remove used variables from the dataset. P T
i, Repea’[ SMbOPILlW\a{.
Problem: 10 0
- : - €
Given a 4 x 4 PSD matrix A, find two 2-sparse 05 0 0
components x;,xy with disjoint supports, that A =
PR - 0 0 & 0
maximize x; Ax; + x, Axs. 0 0 1
€

Solution |: Deflation
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Solution |I: Joint Optimization
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[ Our Algorithm ]
Think of the d x d matrix A as having rank r. For now r < d.

r: rank
Matrix A is PSD and can be decomposed 4 A vV’

into A=VV/'.

Observation |

2
x Ax=[[V'x|3>(V'x,¢)" VceR :|c|:=1

In turn, a variational characterization is the following:

x| Ax = max (x, Vc)’
ceSy !

For multiple components...

max TR (X'AX) =
XeXy

k

S (X7, vedy.

j=1

I11ax IMax
XEXk C:CicSy vy

SPCA as a  double maximization

Observation Il

Fix the value of the r x k variable C. Let W « VC.

k

X = arg max
XeX <
g=1

Can be solved.

XJ W/ 2
< 7 > How? (Later)

r x kK variable.

(smaller than X)

— SPCA reduces to determining the optimal C.
— Low dimensional variable: sample to find the best.

—1 Algorithm | 1

Input: d x d rank-r PSD A
- Initialize empty collection &

- Compute V < Chol(A)
S Fori=1:0 ((4/6)"“'k)
[ Sample C (r x k variable. Each columin is unit-norm)
Compute W «+ VC
Solve

(d xr)

k

X:arg)rcrlea}é;<Xj,Wj>2

| Add X to the collection S.
Output: Best solution X in collection S.

Theorem I: Algo Guarantees (Low rank)

Input: i) dxd rank-r PSD matrix A, ii) k: desired # of components,
i11) s # nnz entries/component, iv) accuracy € € (0,1).

Output: X € X}, such that

TR (XTAX) > (1—¢)-OPT,

in time Tsyp(r) + O ((%)rk -d-(s- k)Z)

| Subroutine |
_ J J
X—arg)rcnea}é;<X , W >
7:,...,Is : disjoint support sets of the k components (columns of X ).

Observation |

It we knew the support sets 7, ...,7Z,, we could determine the
optimal value based on Cauchy-Schwarz:

k
<§(«7,Wﬂ'>2 =S Y wi

1 j=1i€eT;

Unknown supports.

Find them.,

E

()

Q.
|

Consider the complete bipartite graph G on k- s + d vertices:

2dge weights

O

s vertices:
support of the
15t column, \Wi21
> .
w2 d verhces.
representing the
d dimensions
Wi
s vertices: Wi
support of the
k™ columm, @

Maximum Weight Matching on G:

- Each vertex on the left is mapped to a vertex on the right.
— s indices are assigned to each "support set”.

- Each right vertex is used at most once.
— Support sets are disjoint.

- Maximum weight = maximum objective in ().

— Algorithm | 1
Input: d x £ matrix W

s # nnz entries / column of X )
1. Construct bipartite graph G as above.

2. Compute maximum weight matching
to determine the supports 7, ..., 7

3. Compute each column of X for the given
support based on Cauchy-Schwarz.

. J

[ Summary |

- First algorithm for multi-component SPCA with disjoint supports;
Operates by recasting MultiSPCA into multiple instances of the
bipartite maximum weight matching problem.

- Provable approximation guarantees.
- Complexity:
- Low-order polynomial in the ambient dimension d, but

- Exponential in the intrinsic dimension r.

Separates ambient and

SHI much better

than naive brute force, wtrinsic dimension,

[

TEXAS
The University of Texas at Austin

SPCA on a Low Dim Sketch]

In reality, data is not low rank.

However, maybe close to low rank.

— Spectrum of A may be sharply decaying

— A is well approximated by a low rank matrix.

S
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SPCA Algo

l

X (r)

Theorem ll: Algo Guarantees (Full rank)

Input: i) n X d input data matrix S (or covariance A = 1/n-S'S)
it) k: # of components, i) s # nnz entries/component,
iv) accuracy € € (0,1), v) r: rank of approximation,

Output: X, € &) such that
TR (X, AX,)) > (1—¢€)-OPT —2-k-|A — Al2,

in time TskeTCH (’I“) -+ TSVD(T') + O((%)’r‘k - d - (3 : k)2) :

Extra time: for computing
the skefch

Extra error: depends on the

quality of the sketch.

| In Practice |

Cumulative Expl. Variance

- Taking too long?
- Run our algorithm and stop it any time.

— Ignore the theoretical guarantees
— Still finds solutions with higher explained variance,
compared to deflation based methods.

Example: Leukemia Dataset
- # samples n = 72, dimension d=12582 (probe sets)

- Compare to deflation using TPower, EM-SPCA and SpanSPCA
for the single component SPCA problem.

k = 6 components, s = 10 nnz/component s = 10 nnz/component
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