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Abstract
We introduce a novel algorithm to compute non-
negative sparse principal components of posi-
tive semidefinite (PSD) matrices. Our algorithm
comes with approximation guarantees contingent
on the spectral profile of the input matrix A: the
sharper the eigenvalue decay, the better the qual-
ity of the approximation.

If the eigenvalues decay like any asymptotically
vanishing function, we can approximate nonneg-
ative sparse PCA within any accuracy ε in time
polynomial in the matrix dimension n and de-
sired sparsity k, but not in 1/ε. Further, we ob-
tain a data dependent bound that is computed
by executing an algorithm on a given data set.
This bound is significantly tighter than a-priori
bounds and can be used to show that for all
tested datasets our algorithm is provably within
40%− 90% from the unknown optimum.

Our algorithm is combinatorial and explores a
subspace defined by the leading eigenvectors of
A. We test our scheme on several data sets,
showing that it matches or outperforms the pre-
vious state of the art.

1. Introduction
Given a data matrix S ∈ Rn×m comprising m zero-mean
vectors on n features, the first principal component (PC) is

arg max
‖x‖2=1

xTAx, (1)

where A = 1/m · SST is the n × n positive semidefinite
(PSD) empirical covariance matrix. Subsequent PCs can
be computed after A has been appropriately deflated to re-
move the first eigenvector. PCA is arguably the workhorse
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of high dimensional data analysis and achieves dimension-
ality reduction by computing the directions of maximum
variance. Typically, all n features affect positively or neg-
atively these directions resulting in dense PCs, which ex-
plain the largest possible data variance, but are often not
interpretable.

It has been shown that enforcing nonnegativity on the com-
puted principal components can aid interpretability. This
is particularly true in applications where features inter-
act only in an additive manner. For instance, in bioinfor-
matics, chemical concentrations are nonnegative (Kim &
Park, 2007), or the expression level of genes is typically
attributed to positive or negative influences of those genes,
but not both (Badea & Tilivea, 2005). Here, enforcing non-
negativity, in conjunction with sparsity on the computed
components can assist the discovery of local patterns in
the data. In computer vision, where features may coin-
cide with non negatively valued image pixels, nonnegative
sparse PCA pertains to the extraction of the most informa-
tive image parts (Lee & Seung, 1999). In other applica-
tions, nonnegative weights admit a meaningful probabilis-
tic interpretation.

Sparsity emerges as an additional desirable trait of the com-
puted components because it further helps interpretabil-
ity (Zou et al., 2006; d’Aspremont et al., 2007b), even in-
dependently of nonnegativity. From a machine learning
perspective, enforcing sparsity serves as an unsupervised
feature selection method: the active coordinates in an opti-
mal l0-norm constrained PC should correspond to the most
informative subset of features. Although nonnegativity in-
herently promotes sparsity, an explicit sparsity constraint
enables precise control on the number of selected features.

Nonnegative Sparse PC. Nonnegativity and sparsity can
be directly enforced on the principal component optimiza-
tion by adding constraints to (1). The k-sparse nonnegative
principal component of A is

x? = arg max
x∈Snk

xTAx, (2)
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where Snk = {x ∈ Rn : ‖x‖2 = 1, ‖x‖0 ≤ k,x ≥ 0}, for
a desired sparsity parameter k ∈ [n].

The problem of computing the first eigenvector (1) is eas-
ily solvable, but with the additional sparsity and nonnega-
tivity constraints problem (2) becomes computationally in-
tractable. The cardinality constraint alone renders sparse
PCA NP-hard (Moghaddam et al., 2006b). Even if the l0-
norm constraint is dropped, we show that problem (2) re-
mains computationally intractable by reducing it to check-
ing matrix copositivity, a well known co-NP complete de-
cision problem (Murty & Kabadi, 1987; Parrilo, 2000).
Therefore, each of the constraints x ≥ 0 and ‖x‖0 ≤ k
individually makes the problem intractable.

Our Contribution: We introduce a novel algorithm for
approximating the nonnegative k-sparse principal compo-
nent with provable approximation guarantees.

Given any PSD matrix A ∈ Rn×n, sparsity parameter k,
and accuracy parameter d ∈ [n], our algorithm outputs a
nonnegative, k-sparse, unit norm vector xd that achieves at
least ρd fraction of the maximum objective value in (2), i.e.,

xTd Axd ≥ ρd · x?TAx?, (3)

where

ρd ≥ max

{
k

2n
,

1

1 + 2nkλd+1/λ1

}
. (4)

Here, λi is the ith largest eigenvalue of A, and the accuracy
parameter d specifies the rank of the approximation used
and controls the running time. Specifically, our algorithm
runs in timeO(ndkd+nd+1). As can be seen our result de-
pends on the spectral profile of A: the faster the eigenvalue
decay, the tighter the approximation.

Near-Linear time approximation. Our algorithm has a
running time O(ndkd +nd+1), which in the linear sparsity
regime can be as high asO(n2d). This can be non-practical
for large data sets, even if we set the rank parameter d to be
two or three. We present a modification of our algorithm
that can provably approximate the result of the first in near-
linear time. Specifically, for any desired accuracy ε ∈ (0, 1]
it computes a nonnegative, k-sparse, unit norm vector x̂d
such that

x̂Td Ax̂d ≥ (1− ε) · ρd · x?TAx?, (5)

where ρd is as described in (4). We show that the running
time of our approximate algorithm is O

(
ε−d · n log n

)
,

which is near-linear in n for any fixed accuracy parameters
d and ε.

Our approximation theorem has several implications.

Exact solution for low-rank matrices. Observe that if the
matrix A has rank d, our algorithm returns the optimal k-
sparse PC for any target sparsity k. The same holds in

the case of the rank-d update matrix A = σI + C, with
rank(C) = d and arbitrary constant σ, since the algorithm
can be equivalently applied on C.

PTAS for any spectral decay. Consider the linear sparsity
regime k = c · n and assume that the eigenvalues follow a
decay law λi ≤ λ1 ·f(i) for any decay function f(i) which
vanishes: f(i)→ 0 as i→∞. Special cases include power
law decay f(i) = 1/iα or even very slow decay functions
like f(i) = 1/ log log i. For all these cases, we can solve
nonnegative sparse PCA for any desired accuracy ε in time
polynomial in n and k, but not in 1/ε. Therefore, we obtain
a polynomial-time approximation scheme (PTAS) for any
spectral decay behavior.

Computable upper bounds. In addition to these theoret-
ical guarantees, our method yields a data dependent upper
bound on the maximum value of (2), that can be computed
by running our algorithm. As it can be seen in Fig. 4-6,
the obtained upper bound, combined with our achievable
point, sandwiches the unknown optimum within a narrow
region. Using this upper bound we are able to show that
our solutions are within 40 − 90% from the optimal in all
the datasets that we examine. To the best of our knowledge,
this framework of data dependent bounds has not been con-
sidered in the previous literature.

1.1. Related Work

There is a substantial volume of work on sparse PCA,
spanning a rich variety of approaches: from early heuris-
tics in (Jolliffe, 1995), to the LASSO based techniques
in (Jolliffe et al., 2003), the elastic net l1-regression in
(Zou et al., 2006), a greedy branch-and-bound technique in
(Moghaddam et al., 2006a), or semidefinite programming
approaches (d’Aspremont et al., 2008; Zhang et al., 2012;
d’Aspremont et al., 2007a). This line of work does not con-
sider or enforce nonnegativity constraints.

When nonnegative components are desired, fundamentally
different approaches have been used. Nonnegative matrix
factorization (Lee & Seung, 1999) and its sparse variants
(Hoyer, 2004; Kim & Park, 2007) fall within that scope:
data is expressed as (sparse) nonnegative linear combina-
tions of (sparse) nonnegative parts. These approaches are
interested in finding a lower dimensionality representation
of the data that reveals latent structure and minimizes a re-
construction error, but are not explicitly concerned with the
statistical significance of individual output vectors.

Nonnegativity as an additional constraint on (sparse) PCA
first appeared in (Zass & Shashua, 2007). The authors sug-
gested a coordinate-descent scheme that jointly computes
a set of nonnegative sparse principal components, maxi-
mizing the cumulative explained variance. An l1-penalty
promotes sparsity of computed components on average,
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but not on each component individually. A second convex
penalty is incorporated to favor orthogonal components.

Similar convex optimization approaches for nonnegative
PCA have been subsequently proposed in the literature. In
(Allen & Maletić-Savatić, 2011) for instance, the authors
suggest an alternating maximization scheme for the com-
putation of the first nonnegative PC, allowing the incorpo-
ration of known structural dependencies.

A competitive algorithm for nonnegative sparse PCA was
established in (Sigg & Buhmann, 2008), with the de-
velopment of a framework stemming from Expectation-
Maximization (EM) for a probabilistic generative model of
PCA. The proposed algorithm, which enforces hard spar-
sity, or nonnegativity, or both constraints simultaneously,
computes the first approximate PC in O(n2), i.e., time
quadratic in the number of features.

To the best of our knowledge, no prior works provide prov-
able approximation guarantees for the nonnegative sparse
PCA optimization problem. Further, no data dependent up-
per bounds have been present in the previous literature.

Differences from SPCA work. Our work is closely related
to (Karystinos & Liavas, 2010; Asteris et al., 2011; Papail-
iopoulos et al., 2013) that introduced the ideas of solving
low-rank quadratic combinatorial optimization problems
on low-rank PSD matrices using hyperspectral transforma-
tions. Such transformations are called spannograms and
follow a similar architecture. In this paper, we extend the
spannogram framework to nonnegative sparse PCA. The
most important technical issue compared to (Asteris et al.,
2011; Papailiopoulos et al., 2013) is introducing nonnega-
tivity constraints in spannogram algorithms.

To understand how this changes the problem, notice that
in the original sparse PCA problem without nonnegativity
constraints, if the support is known, the optimal principal
component supported on that set can be easily found. How-
ever, under nonnegativity constraints, the problem is hard
even if the optimal support is known. This is the funda-
mental technical problem that we address in this paper. We
show that if the involved subspace is low-dimensional, it is
possible to solve this problem.

2. Algorithm Overview
Given an n × n PSD matrix A, the desired sparsity k, and
an accuracy parameter d ∈ [n], our algorithm computes a
nonnegative, k-sparse, unit norm vector xd approximating
the nonnegative, k-sparse PC of A. We begin with a high-
level description of the main steps of the algorithm.

Step 1. Compute Ad, the rank-d approximation of A. We
compute Ad, the best rank-d approximation of A, zeroing

Algorithm 1 Spannogram Nonnegative Sparse PCA
input A (n× n PSD matrix), k ∈ [n], d ∈ [n].
1: U,Λ← svd(A, d)
2: V = UΛ

1/2 {Ad = VVT }
3: Sd ← Spannogram(V, k) {Algo. 2}
4: Xd ← {} {|Sd| ≤ O(nd)}
5: for all I ∈ Sd do
6: c(I) ← argmax‖c‖2=1

VIc≥0

‖ (VIc) ‖22 {Sec. 5}

7: x
(I)
I ← |VIc|/‖VIc‖, x

(I)
Ic ← 0

8: Xd ← Xd ∪ {x(I)}
9: end for {|Xd| ≤ |Sd|}

output xd ← argmaxx∈Xd xTAdx

out the n− d trailing eigenvalues of A, that is,

Ad =

d∑
i=1

λiuiu
T
i ,

where λi is the ith largest eigenvalue of A and ui the cor-
responding eigenvector.

Step 2. Compute Sd, a set of O(nd) candidate supports.
Enumerating the

(
n
k

)
possible supports for k-sparse vectors

in Rn is computationally intractable. Using our Spanno-
gram technique described in Section 4, we efficiently de-
termine a collection Sd of support sets, with cardinality
|Sd| ≤ 2d

(
n+1
d

)
, that provably contains the support of the

nonnegative, k-sparse PC of Ad.

Step 3. Compute Xd, a set of candidate solutions. For
each candidate support set I ∈ Sd, we compute a candidate
solution x supported only in I:

arg max
‖x‖2=1,x≥0,

supp(x)⊆I

xTAdx. (6)

The constant rank of Ad is essential in solving (6): the
constrained quadratic maximization is in general NP-hard,
even for a given support.

Step 4. Output the best candidate solution in Xd, i.e., the
candidate that maximizes the quadratic form.

If multiple components are desired, the procedure is re-
peated after an appropriate deflation has been applied on
Ad (Mackey, 2008). The steps are formally presented in
Algorithm 1. A detailed description is the subject of subse-
quent sections.

2.1. Approximation Guarantees

Instead of the nonnegative, k-sparse, principal component
x? of A, which attains the optimal value OPT = x?

TAx?,
our algorithm outputs a nonnegative, k-sparse, unit norm
vector xd. We measure the quality of xd as a surrogate of
x? by the approximation factor xd

TAxd/OPT. Clearly,
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the approximation factor takes values in (0, 1], with higher
values implying tighter approximation.
Theorem 1. For any n×n PSD matrix A, sparsity param-
eter k, and accuracy parameter d ∈ [n], Alg. 1 outputs a
nonnegative, k-sparse, unit norm vector xd such that

xd
TAxd ≥ ρd · x?TAx?,

where

ρd ≥ max

{
k

2n
,

1

1 + 2nkλd+1/λ1

}
,

in time O(nd+1 + ndkd).

The approximation guarantee of Theorem 1 relies on estab-
lishing connections among the eigenvalues of A, and the
quadratic forms xd

TAxd and xd
TAdxd. The proof can

be found in the supplemental material. The complexity of
Algorithm 1 follows upon its detailed description.

3. Proposed Scheme
Our algorithm approximates the nonnegative, k-sparse PC
of a PSD matrix A by computing the corresponding PC of
Ad, a rank-d surrogate of the input argument A:

Ad =

d∑
i=1

vivi
T = VVT , (7)

where vi =
√
λiui is the scaled eigenvector corresponding

to the ith largest eigenvalue of A, and V = [v1 · · ·vd] ∈
Rn×d. In this section, we delve into the details of our al-
gorithmic developments and describe how the low rank of
Ad unlocks the computation of the desired PC.

3.1. Rank-1: A simple case

We begin with the rank-1 case because, besides its moti-
vational simplicity, it is a fundamental component of the
algorithmic developments for the rank-d case.

In the rank-1 case, V reduces to a single vector in Rn and
x1, the nonnegative k-sparse PC of A1, is the solution to

max
x∈Snk

xTA1x = max
x∈Snk

(
vTx

)2
. (8)

That is, x1 is the nonnegative, k-sparse, unit length vector
that maximizes (vTx)2. Let I = supp(x1), |I| ≤ k, be the
unknown support of x1. Then, (vTx)2 =

(∑
i∈I vi · xi

)2
.

Since x1 ≥ 0, it should not be hard to see that the active en-
tries of x1 must correspond to nonnegative or nonpositive
entries of v, but not a combination of both. In other words,
vI , the entries of v indexed by I, must satisfy vI ≥ 0 or
vI ≤ 0. In either case, by the Cauchy-Schwarz inequality,(

vTx
)2

=
(
vI

TxI
)2 ≤ ‖vI‖22‖xI‖22,= ‖vI‖22. (9)

Equality in (9) can always be achieved by setting xI =
vI/‖vI‖2 if vI ≥ 0, and xI = −vI/‖vI‖2 if vI ≤ 0.
The support of the optimal solution x1 is the set I for which
‖vI‖22 in (9) is maximized under the restriction that the
entries of vI do not have mixed signs.
Def. 1. Let I+

k (v), 1 ≤ k ≤ n denote the set of indices of
the (at most) k largest nonnegative entries in v ∈ Rn.
Proposition 3.1. Let x1 be the solution to problem (8).
Then, supp (x1) ∈ S1 =

{
I+
k (v) , I+

k (−v)
}
.

The collection S1 and the associated candidate vectors via
(9) are constructed in O(n) . The solution x1 is the candi-
date that maximizes the quadratic.

3.2. Rank-d case

In the rank-d case, xd, the nonnegative, k-sparse PC of Ad

is the solution to the following problem:

max
x∈Snk

xTAdx = max
x∈Snk

‖VTx‖22. (10)

Consider an auxiliary vector c ∈ Rd, with ‖c‖2 = 1. From
the Cauchy-Schwarz inequality,

‖VTx‖22 = ‖c‖22‖VTx‖22 ≥
∣∣cT (VTx

)∣∣2 . (11)

Equality in (11) is achieved if and only if c is colinear to
VTx. Since c spans the entire unit sphere, such a c ex-
ists for every x, yielding an alternative description for the
objective function in (10):

‖VTx‖22 = max
c∈Sd

∣∣∣(Vc)
T

x
∣∣∣2 , (12)

where Sd =
{
c ∈ Rd : ‖c‖2 = 1

}
is the d-dimensional

unit sphere. The maximization in (10) becomes

max
x∈Snk

‖VTx‖22 = max
x∈Snk

max
c∈Sd,

| (Vc)
T

x|2

= max
c∈Sd,

max
x∈Snk

| (Vc)
T

x|2. (13)

The set of candidate supports. A first key observation is
that for fixed c, the product (Vc) is a vector in Rn. Maxi-
mizing | (Vc)

T
x|2 over all vectors x ∈ Snk is a rank-1 in-

stance of the optimization problem, as in (8). Let (cd, xd)
be the optimal solution of (10). By Proposition 3.1, the sup-
port of xd coincides with either I+

k (Vcd) or I+
k (−Vcd).

Hence, we can safely claim that supp(xd) appears in

Sd =
⋃
c∈Sd

{
I+
k (Vc)

}
. (14)

Naively, one might think that Sd can contain as many as(
n
k

)
distinct support sets. In Section 4, we show that |Sd| ≤

2d
(
n+1
d

)
and present our Spannogram technique (Alg. 2)

for efficiently constructing Sd in O(nd+1). Each support
in Sd corresponds to a candidate principal component.
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Solving for a given support. We seek a pair (x, c) that
maximizes (13) under the additional constraint that x is
supported only on a given set I. By the Cauchy-Schwarz
inequality, the objective in (13) satisfies

| (Vc)
T

x|2 = | (VIc)
T

xI |2 ≤ ‖ (VIc) ‖22, (15)

where VI is the matrix formed by the rows of V indexed
by I. Equality in (15) is achieved if and only if xI is col-
inear to VIc. However, it is not achievable for arbitrary c,
as xI must be nonnegative. From Proposition 3.1, we infer
that x being supported in I implies that all entries of VIc
have the same sign. Further, whenever the last condition
holds, a nonnegative xI colinear to VIc exists and equal-
ity in (15) can be achieved. Under the additional constraint
that supp(x) = I ∈ Sd, the maximization in (13) becomes

max
c∈Sd

max
x∈Snk

supp(x)⊆I

| (Vc)
T

x|2 = max
c∈Sd

VIc≥0

‖ (VIc) ‖22. (16)

The constraint VIc ≥ 0 in (16), is equivalent to requiring
that all entries in VIc have the same sign, since c and −c
achieve the same objective value.

The optimization problem in (16) is NP-hard. In fact, it en-
compasses the original nonnegative PCA problem as a spe-
cial case. Here, however, the constant dimension d = Θ(1)
of the unknown variable c permits otherwise intractable op-
erations. In Section 5, we outline an O(kd) algorithm for
solving this constrained quadratic maximization.

The algorithm. The previous discussion suggests a two-
step algorithm for solving the rank-d optimization prob-
lem in (10). First, run the Spannogram algorithm to con-
struct Sd, the collection of O(nd) candidate supports for
xd, in O(nd+1). For each I ∈ Sd, solve (16) in O(kd)
to obtain a candidate solution x(I) supported on I. Out-
put the candidate solution that maximizes the quadratic
xTAdx. Efficiently combining the previous steps yields
an O(nd+1 + ndkd) procedure for approximating the non-
negative sparse PC, outlined in Alg. 1.

4. The Nonnegative Spannogram
In this section, we describe how to construct Sd, the collec-
tion of candidate supports, defined in (14) as

Sd =
⋃
c∈Sd

{
I+
k (Vc)

}
,

for a given V ∈ Rn×d. Sd comprises all support sets in-
duced by vectors in the range of V. The Spannogram of
V is a visualization of its range, and a valuable tool in effi-
ciently collecting those supports.

Figure 1. Spannogam of an arbitrary rank-2 matrix V ∈ R4×2.
At a point φ, the values of the curves correspond to the entries of
a vector v(φ) in the range of V and vice versa.

4.1. Constructing S2

We describe the d = 2 case, the simplest nontrivial case, to
facilitate a gentle exposure to the Spannogram technique.
The core ideas generalize to arbitrary d and a detailed de-
scription is provided in the supplemental material.

Spherical variables. Up to scaling, all vectors v in the
range of V ∈ Rn×2, R(V), can be written as v = Vc for
some c ∈ R2 : ‖c‖ = 1. We introduce a variable φ ∈ Φ =
(−π/2, π/2], and set c to be the following function of φ:

c(φ) =
[
sin(φ) cos(φ)

]T
.

The range of V, R(V) = {±v(φ) = ±Vc(φ), φ ∈ Φ}, is
also a function of φ, and in turn S2 can be expressed as

S2 =
⋃
φ∈Φ

{
I+
k (v(φ)) , I+

k (−v(φ))
}
.

Spannogram. The ith entry of v(φ) is a continuous func-
tion of φ generated by the ith row of V: [v(φ)]i =
Vi,1 sin(φ) +Vi,2 cos(φ). Fig. 1 depicts the functions cor-
responding to the rows of an arbitrary matrix V ∈ R4×2.
We call this a spannogram, because at each φ, the values of
the curves coincide with the entries of a vector in the range
of V. A key observation is that the sorting of the curves
at some φ is locally invariant for most points in Φ. In fact,
due to the continuity of the curves, as we move along the
φ-axis, the set I+

k (v(φ)) can only change at points where a
curve intersects with (i) another curve, or (ii) the zero axis;
a change in either the sign of a curve or the relative or-
der of two curves is necessary, although not sufficient, for
I+
k (v(φ)) to change.

Appending a zero (n + 1)th row to V, the two aforemen-
tioned conditions can be merged into one: I+

k (v(φ)) can
change only at the points where two of the n+ 1 curves in-
tersect. Finding the unique intersection point of two curves
[v(φ)]i and [v(φ)]j for all pairs {i, j} is the key to dis-
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covering all possible candidate support sets. There are ex-
actly

(
n+1

2

)
such points partitioning Φ into

(
n+1

2

)
+1 inter-

vals within which the set of largest k nonnegative entries of
v(φ) and −v(φ) are invariant.

Constructing S2. The point φij where the ith and jth

curves intersect, corresponds to a vector v(φij) ∈ R(V)
whose ith and jth entries are equal. To find it, it suffices
to compute a c 6= 0 such that (ei − ej)

TVc = 0, i.e., a
unit norm vector cij in the one-dimensional nullspace of
(ei − ej)

TV. Then, v(φij) = Vcij .

We compute the candidate support I+
k (v(φij)) at the in-

tersection. Assuming for simplicity that only the ith and
jth curves intersect at φij , the sorting of all curves is un-
changed in a small neighborhood of φij , except the ith and
jth curves whose order changes over φij . If both the ith and
jth entries of v(φij) or none of them is included in the k
largest nonnegative entries, then the set I+

k (v(φ)) in the
two intervals incident to φij is identical. Otherwise, the ith

and jth curve occupy the kth and (k+ 1)th order at φij , and
the change in their relative order implies that one leaves
and one joins the set of k largest nonnegative curves at φij .
The support sets associated with the two adjacent intervals
differ only in one element (one contains index i and the
other contains index j instead), while the remaining k − 1
common indices correspond to the k − 1 largest curves at
the intersection point φij . We include both in S2 and repeat
the above procedure for I+

k (−v(φij)).

Each pairwise intersection is computed in O(1) and the at
most 4 associated candidate supports in O(n). In total, the
collection S2 comprises |S2| ≤ 4

(
n+1

2

)
= O(n2) candidate

supports and can be constructed in O(n3).

The generalized Spannogram algorithm for constructing Sd
runs in O(nd+1) and is formally presented in Alg. 2. A de-
tailed description is provided in the supplemental material.

5. Quadratic maximization over unit vectors
in the intersection of halfspaces

Each support set I in Sd yields a candidate nonnegative,
k-sparse PC, which can be obtained by solving (16), a
quadratic maximization over the intersection of halfspaces
and the unit sphere:

c? = arg max
c∈Sd
Rc≥0

cTQc, (Pd)

where Q = VT
IVI is a d× d matrix and R is a k × d ma-

trix. Problem (Pd) is NP-hard: for Q PSD and R = Id×d,
it reduces to the original problem in (2). Here, however,
we are interested in the case where the dimension d is a
constant. We outline an O(kd) algorithm, i.e., polynomial
in the number of linear constraints, for solving (Pd). A
detailed proof is available in the supplemental material.

Algorithm 2 Spannogram algorithm for constructing Sd
input V ∈ Rn×d, k ∈ [n].
1: Sd ← {} {Set of candidate supports inR(V)}
2: V̂←

[
VT 0d

]T
{Append zero row; V̂ ∈ Rn+1×d}

3: for all
(
n+1
d

)
sets {i1, . . . , id} ⊆ [n+ 1] do

4: c← Nullspace


 eT

i1 − eT
i2

...
eT
i1 − eT

id

 V̂ ∈ Rd−1×d


5: for α ∈ {+1,−1} do
6: I ← I+k (αVc) {Entries ≥ than the kth one}
7: if |I| ≤ k then
8: Sd ← Sd ∪ {I} {No ambiguity}
9: else

10: A ← {i1, . . . , id}\{n+ 1} {Ambiguous set}
11: T ← I\ {{i1, . . . , id} ∪ {n+ 1}}
12: r ← k − |T |
13: d̂← |A|
14: for all

(
d̂
r

)
r-subsets A(r) ⊆ A} do

15: Î ← T ∪ A(r)

16: Sd ← Sd ∪ {Î} {≤ 2d new candidates}
17: end for
18: end if
19: end for
20: end for
output Sd

The objective of (Pd) is maximized by u1 ∈ Rd, the lead-
ing eigenvector of Q. If u1 or −u1 is feasible, i.e., if it
satisfies all linear constraints, then c? = ±u1. It can be
shown that if none of ±u1 is feasible, at least one of the k
linear constraints is active at the optimal solution c?, that
is, there exists 1 ≤ i ≤ k such that Ri,:c? = 0.

Fig. 2 depicts an example for d = 2. The leading eigen-
vector of Q lies outside the feasible region, an arc of the
unit-circle in the intersection of k halfspaces. The optimal
solution coincides with one of the two endpoints of the fea-
sible region, where a linear inequality is active, motivating
a simple algorithm for solving (P2): (i) for each linear in-
equality determine a unit length point where the inequality
becomes active, and (ii) output the point that is feasible and
maximizes the objective.

Figure 2. An instance of (P2): the leading eigenvector u1 of
Q ∈ S2 lies outside the feasible region (highlighted arc). The
maximum of the constrained quadratic optimization problem is
attained at φ1, an endpoint of the feasible interval.



Nonnegative Sparse PCA with Provable Guarantees

Back to the general (Pd) problem, if a linear inequality
Ri,:c ≥ 0 for some i ∈ [k] is enforced with equality, the
modified problem can be written as a quadratic maximiza-
tion in the form of (Pd), with dimension reduced to d − 1
and k−1 linear constraints. This observation suggests a re-
cursive algorithm for solving (Pd): If ±u1 is feasible, it is
also the optimal solution. Otherwise, for i = 1, . . . , k, set
the ith inequality constraint active, solve recursively, and
collect candidate solutions. Finally, output the candidate
that maximizes the objective. The O(kd) recursive algo-
rithm is formally presented in the supplemental material.

6. Near-Linear Time Nonnegative SPCA
Alg. 1 approximates the nonnegative, k-sparse PC of a PSD
matrix A by solving the nonnegative sparse PCA problem
exactly on Ad, the best rank-d approximation of A. Albeit
polynomial in n, the running time of Alg. 1 can be imprac-
tical even for moderate values of n.

Instead of pursuing the exact solution to the low-rank non-
negative sparse PCA problem maxx∈Snk xTAdx, we can
compute an approximate solution in near-linear time, with
performance arbitrarily close to optimal. The suggested
procedure is outlined in Algorithm 3, and a detailed dis-
cussion is provided in the supplemental material. Alg. 3
relies on randomly sampling points from the range of Ad

and efficiently solving rank-1 instances of the nonnegative
sparse PCA problem as described in Section 3.1.
Theorem 2. For any n×n PSD matrix A, sparsity param-
eter k, and accuracy parameters d ∈ [n] and ε ∈ (0, 1],
Alg. 3 outputs a nonnegative, k-sparse, unit norm vector
x̂d such that

x̂Td Ax̂d ≥ (1− ε) · ρd · x?TAx?,

with probability at least 1 − 1/n, in time O
(
ε−d · n log n

)
plus the time to compute the d leading eigenvectors of A.

7. Experimental Evaluation
We empirically evaluate the performance of our algorithm
on various datasets and compare it to the EM algorithm1 for
sparse and nonnegative PCA of (Sigg & Buhmann, 2008)
which is known to outperform previous algorithms.

CBCL Face Dataset. The CBCL face image dataset
(Sung, 1996), with 2429 gray scale images of size 19× 19
pixels, has been used in the performance evaluation of both
the NSPCA (Zass & Shashua, 2007) and EM (Sigg & Buh-
mann, 2008) algorithms.

Fig. 3 depicts samples from the dataset, as well as six or-
thogonal, nonnegative, k-sparse components (k = 40) suc-
cessively computed by (i) Alg. 3 (d = 3, ε = 0.1) and

1 Matlab implementation available by the author.

Algorithm 3 Approximate Spannogram NSPCA (ε-net)
input A (n× n PSD matrix), k, d ∈ [n], ε ∈ (0, 1]
1: [U,Λ] = svd(A, d)
2: V = UΛ

1/2 {Ad = VVT }
3: Xd = ∅
4: for i = 1 : O(ε−d · logn) do
5: c = randn(d, 1)
6: a = Vc/‖c‖2
7: x = rank1solver(a) {Section 3.1}
8: Xd = Xd ∪ {x}
9: end for

output x̂d = argmaxx∈Xd ‖V
Tx‖22

(ii) the EM algorithm. Features active in one component
are removed from the dataset prior to computing subse-
quent PCs to ensure orthogonality. Fig. 3 reveals the ability
of nonnegative sparse PCA to extract significant parts.

In Fig. 4, we plot the variance explained by the computed
approximate nonnegative, k-sparse PC (normalized by the
leading eigenvalue) versus the sparsity parameter k. Alg. 3
for d = 3 and ε = 0.1, and the EM algorithm exhibit
nearly identical performance. For this dataset, we also
compute the leading component using the NSPCA algo-
rithm of (Zass & Shashua, 2007). Note that NSPCA does
not allow for a precise control of the sparsity of its output;
an appropriate sparsity penalty β was determined via bi-
nary search for each target sparsity k. We plot the explained
variance only for those values of k for which a k-sparse
component was successfully extracted. Finally, note that
both the EM and NSPCA algorithms are randomly initial-
ized. All depicted values are the best results over multiple
random restarts.

Our theory allows us to obtain provable approximation
guarantees: based on Theorem 2 and the output of Alg. 3,
we compute a data dependent upper bound on the maxi-
mum variance, which provably lies in the shaded area. For
instance, for k = 180, the extracted component explains
at least 58% of the variance explained by the true nonneg-
ative, k-sparse PC. The quality of the bound depends on
the accuracy parameters d and ε, and the eigenvalue decay
of the empirical covariance matrix of the data. There exist

(a)

(b)

(c)

Figure 3. We plot (a) six samples from the dataset, and the six
leading orthogonal, nonnegative, k-sparse PCs for k = 40 ex-
tracted by (b) Alg. 3 (d = 3, ε = 0.1), and (c) the EM algorithm.
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Figure 4. CBCL dataset (Sung, 1996). We plot the normalized
variance explained by the approximate nonnegative, k-sparse PC
versus the sparsity k. Our theory yields a provable data dependent
approximation guarantee: the true unknown optimum provably
lies in the shaded area.

datasets on which our algorithm provably achieves 70% or
even 90% of the optimal.

Leukemia Dataset. The Leukemia dataset (Armstrong
et al., 2001) contains 72 samples, each consisting of ex-
pression values for 12582 probe sets. The dataset was used
in the evaluation of (Sigg & Buhmann, 2008). In Fig. 5,
we plot the normalized variance explained by the computed
nonnegative, k-sparse PC versus the sparsity parameter k.
For low values of k, Alg. 3 outperforms the EM algorithm
in terms of explained variance. For larger values, the two
algorithms exhibit similar performance.

The approximation guarantees accompanying our algo-
rithm allow us to upper bound the optimal performance.
For k as small as 50, which roughly amounts to 0.4% of the
features, the extracted component captures at least 44.6%
of the variance corresponding to the true nonnegative k-
sparse PC. The obtained upper bound is a significant im-
provement compared to the trivial bound given by λ1.

Low Resolution Spectrometer Dataset. The Low Reso-
lution Spectrometer (LRS) dataset, available in (Bache &
Lichman, 2013), originates from the Infra-Red Astronomy
Satellite Project. It contains 531 high quality spectra (sam-
ples) measured in 93 bands. Fig. 6 depicts the normalized
variance explained by the computed nonnegative, k-sparse
PC versus the sparsity parameter k. The empirical covari-
ance matrix of this dataset exhibits sharper decay in the
spectrum than the previous examples, yielding tighter ap-
proximation guarantees according to our theory. For in-
stance, for k = 20, the extracted nonnegative component
captures at least 86% of the maximum variance. For values
closer to k = 90, where the computed PC is nonnegative
but no longer sparse, this value climbs to nearly 93%.

50 100 150 200 250 300
0

.5

1

Support Cardinality (first PC)

N
o
rm

a
liz

e
d
 E

x
p
la

in
e
d
 V

a
ri
a
n
c
e

LEUKEMIA Dataset

 

 

EM nns

Span (d=3, ε=0.10)

OPT UB

≥ 45.6%OPT

≥ 57.5%OPT

Figure 5. Leukemia dataset (Armstrong et al., 2001). We plot the
normalized variance explained by the output of Alg. 3 (d = 3, ε =
0.1) versus the sparsity k, and compare with the EM algorithm
of (Sigg & Buhmann, 2008). By our approximation guarantees,
the maximum variance provably lies in the shaded area.

8. Conclusions
We introduced a novel algorithm for nonnegative sparse
PCA, expanding the spannogram theory to nonnegative
quadratic optimization. We observe that the performance
of our algorithm often matches and sometimes outperforms
the previous state of the art (Sigg & Buhmann, 2008). Even
though the theoretical running time of Alg. 3 scales better
than EM, in practice we observed similar speed, both in
the order of a few seconds. Our approach has the benefit
of provable approximation, giving both theoretical a-priori
guarantees and data dependent bounds that can be used to
estimate the variance explained by nonnegative sparse PCs,
as shown in our experiments.
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Figure 6. LRS dataset (Bache & Lichman, 2013). We plot the
normalized explained variance versus the sparsity k. Alg. 3 (d =
3, ε = 0.1) and the EM algorithm exhibit similar performance.
The optimum value of the objective in (2) provably lies in the
shaded area, which in this case is particularly tight.
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A. Approximation Guarantees
In this section, we develop a series of Lemmata that es-
tablish the approximation guarantees of Theorem 1. First,
recall that

OPT = max
x∈Snk

xTAx

corresponds to the optimal value of the quadratic objec-
tive function with argument A, and let x? be the optimal
solution, i.e., the nonnegative, k-sparse, unit norm vector
achieving value OPT. Similarly, OPTd denotes the op-
timal value of the quadratic with argument Ad, the best
rank-d approximation of A, that is

OPTd = max
x∈Snk

xTAdx,

and xd is the corresponding optimal solution. Alg. 1 with
input A and accuracy parameter d computes and outputs
xd as a surrogate for the desired vector x?. We show that

xd
TAxd ≥ ρd · x?TAx?,

where

ρd ≥ max

{
k

2n
,

1

1 + 2nkλd+1/λ1

}
.

Lemma A.1. Let xd denote the nonnegative k-sparse prin-
cipal component of Ad, i.e., xd = arg maxx∈Snk xTAdx,
achieving value OPTd = xd

TAdxd. Then,

xd
TAxd ≥ OPTd.

Proof. The lemma is a consequence of the fact that A is a
positive semidefinite matrix:

xd
TAxd = xd

T

(
n∑
i=1

λiqiq
T
i

)
xd

= xd
TAdxd +

n∑
i=d+1

∣∣∣√λiqTi xd

∣∣∣2
≥ OPTd, ∀d ∈ [n],

which is the desired result.

Lemma A.2. The optimal value OPTd of the rank-d non-
negative k-sparse PCA problem satisfies

OPT− λd+1 ≤ OPTd ≤ OPT.

Proof. The upper bound is due to the fact that A is a posi-

tive semidefinite matrix:

OPT = max
x∈Snk

xTAx

≥ xd
TAxd

= xd
TAdxd + xd

T (A−Ad) xd

= OPTd +

n∑
i=d+1

λi|qiTxd|2

≥ OPTd.

For the lower bound,

OPT = max
x∈Snk

xTAx

= max
x∈Snk

xT

(
n∑
i=1

λiqiq
T
i

)
x

≤ max
x∈Snk

xTAdx + max
x∈Snk

xT
n∑

i=d+1

λiqiq
T
i x

≤ OPTd + max
x∈Snk

xT
n∑

i=d+1

λiqiq
T
i x

≤ OPTd + max
‖x‖=1

xT
n∑

i=d+1

λiqiq
T
i x

= OPTd + λd+1,

which completes the proof.

Lemma A.3.

OPTd
OPT

≥ max

{
OPTd
λ1

,
1

1 + λd+1

OPTd

}
, ∀d ∈ [n].

Proof. It suffices to show that OPTd/OPT is lower
bounded by both quantities on the right-hand side. The first
lower bound follows trivially from the fact that

OPT = max
x∈Snk

xTAx ≤ max
‖x‖2=1

xTAx = λ1.

For the second lower bound, note that by Lemma A.2,
OPT ≤ OPTd + λd+1, which in turn implies

OPTd
OPT

≥ 1

1 + λd+1/OPTd
.

Lemma A.4. The optimal value OPT1 of the nonnegative,
k-sparse PCA problem maxx∈Snk xTA1x on the rank-1
matrix A1 satisfies

OPT1 ≥
1

2

k

n
λ1.
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Proof. Let (v)
+
k denote the vector obtained by setting to

zero all but the (at most) k largest nonnegative entries of v.
By definition,

OPT1 = max
x∈Snk

xTA1x

= λ1 ·max
x∈Snk

xTq1q
T
1 x

= λ1 ·max
x∈Snk

∣∣qT1 x
∣∣2

= λ1 ·max


∣∣∣∣∣qT1 (q1)

+
k

‖ (q1)
+
k ‖

∣∣∣∣∣
2

,

∣∣∣∣∣qT1 (−q1)
+
k

‖ (−q1)
+
k ‖

∣∣∣∣∣
2


= λ1 ·max
{
‖ (q1)

+
k ‖

2, ‖ (−q1)
+
k ‖

2
}
.

It holds that

‖ (q1)
+
k ‖

2 ≥ k

n
‖ (q1)

+
n ‖

2. (17)

To verify that, let Ik be the support of (q1)
+
k and In the

support of (q1)
+
n . Clearly, Ik ⊆ In. Let u be the value of

the smallest non-zero entry in (q1)
+
k . This implies that

‖(q1)+
k ‖

2 =
∑
i∈Ik

([q1]i)
2 ≥ k · u2.

Further,

‖(q1)+
n ‖2 =

∑
i∈Ik

([q1]i)
2 +

∑
i∈In\In

([q1]i)
2

= ‖(q1)+
k ‖

2 +
∑

i∈In\Ik

([q1]i)
2

≤ ‖(q1)+
k ‖

2 + (n− k) · u2,

From the two inequalities, it follows that

‖(q1)+
n ‖2

‖(q1)+
k ‖2

≤ 1 +
(n− k) · u2

k · u2
≤ n

k
,

which in turn implies (17). By the same argument,

‖(−q1)+
k ‖

2 ≥ k

n
‖(−q1)+

n ‖2. (18)

Finally, noting that

1 = ‖q1‖2 = ‖ (q1)
+
n ‖

2 + ‖ (−q1)
+
n ‖

2,

and combining with (17) and (18), we obtain

OPT1 ≥ λ1 ·max

{
k

n
‖ (q1)

+
n ‖

2,
k

n
‖ (−q1)

+
n ‖

2

}
=
k

n
λ1 ·max

{
‖ (q1)

+
n ‖

2, 1− ‖ (q1)
+
n ‖

2
}

≥ 1

2

k

n
λ1,

which completes the proof.

Lemma A.5.

OPTd
OPT

≥ max

{
k

2n
,

1

1 + 2nkλd+1/λ1

}
.

Proof. A1 is the best rank-1 approximation of Ad. By
Lemmata A.2 and A.4, we have OPTd ≥ OPT1 ≥ 1

2
k
nλ1,

for all d ≥ 1. The desired result follows from Lemma A.3
and the previous lower bound on OPTd.

Proof of Theorem 1. By Lemma A.1, xd
TAxd ≥

OPTd. Dividing both sides by OPT = x?
TAx?, we obtain

xd
TAxd ≥ ρd · x?TAx?,

where ρd = OPTd/OPT. The lower bound on ρd given in
Theorem 1 follows from Lemma A.5. The computational
complexity of Alg. 1 follows from the detailed description
of the algorithm and is analyzed separately. �

A.1. Approximation Guarantees - Special Cases

Corollary 1. If the eigenvalues of A follow a decay law
λi ≤ λ1 · f(i) for any vanishing function f(i), i.e., for
f(i)→ 0 as i→∞, then for k = c ·n, where c is constant
0 < c ≤ 1 (linear sparsity regime), Alg. 1 yields a polyno-
mial time approximation scheme (PTAS). That is, for any
constant ε, we can choose a constant accuracy parameter
d and obtain a solution xd such that

xd
TAxd ≥ (1− ε) · OPT,

in time polynomial in n and k, but not in 1/ε.

Proof. By assumption, λi ≤ λ1 · f(i) for some function
f(i) such that f(i) → 0 as i → ∞. For any constants c
and ε, there must hence exists a finite i such that

f(i) ≤ c

2
· ε

1− ε
.

Set d equal to the smallest i for which the above holds: d
will be some function g(ε) that depends on f(·). By Theo-
rem 1, and under the assumption of the corollary we have

ρd ≥
1

1 + 2nkλd+1/λ1
≥ 1

1 + 2f(d)/c

≥ 1

1 + ε/(1− ε)
≥ (1− ε),

which implies that for any ε, the output xd will be within
factor 1−ε from the optimal. Alg. 1 runs in timeO(n2d) =
O(ng(ε)), which completes the proof.
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B. The Spannogram Algorithm
In this section, we provide a detailed description of the
Spannogram algorithm for the construction of the collec-
tion Sd of candidate support sets in the case of arbitrary d.

For completeness, we first give a proof for Proposition 3.1,
which states that the support of x1, the optimal solution of
the rank-1 nonnegative sparse PCA problem

max
x∈Snk

xTA1x = max
x∈Snk

(
vTx

)2
,

where A1 = vvT , coincides with one of the two sets in the
collection S1 =

{
I+
k (v) , I+

k (−v)
}

.

B.1. Proof of Proposition 3.1

Let x? = arg maxx∈Snk
(
vTx

)2
. First, assume that

vTx? ≥ 0. We will show that supp (x?1) ⊆ I+
k (v).

Assume, for the sake of contradiction, that the support of
x? does not coincide with I+

k (v). This implies that there
exists an index j /∈ I+

k (v) such that j ∈ supp (x?), i.e.,
[x?]j > 0. By the definition of I+

k (v), j /∈ I+
k (v) implies

that either (i) vj < 0, or (ii) there exist at least k nonnega-
tive entries in v larger than vj .

In the first case, consider a vector x̂ that is equal to x? in
all entries except the jth entry which is set to zero in x̂.
Then, y = x̂/‖x̂‖2, is k-sparse (at most k − 1 nonzero
entries), nonnegative and unit length. It should not be hard
to see that since vj < 0, vTy ≥ vTx?, contradicting the
optimality of x?.

In the second case, let l be the index of one of the k largest
nonnegative entries in v such that [x?]l = 0. Such an en-
try exists, because otherwise x? would have more than k
nonzero entries. Construct a nonnegative, k-sparse, unit
length vector y by swapping the values in the jth and l-th
entries of x?. Then, vTy ≥ vTx?, contradicting the opti-
mality of x?.

We conclude that

vTx? ≥ 0 ⇒ supp(x?) ⊆ I+
k (v) .

Similarly, if vTx? < 0, then −vTx? > 0, and

vTx? < 0 ⇒ supp(x?) ⊆ I+
k (−v) .

Since either vTx? ≥ 0 or vTx? < 0 holds, we conclude
that supp(x?) ∈ S1 =

{
I+
k (v) , I+

k (−v)
}

. �

B.2. The general rank-d case

We generalize the developments of Section 4.1 to case of
arbitrary constant d. More specifically, we will show that

for any V ∈ Rn×d, the collection

Sd =
⋃
c∈Sd

{
I+
k (Vc)

}
contains at most O(nd) candidate support sets and can be
constructed in O(nd+1).

Hyperspherical variables. Let R(V) denote the range
of V ∈ Rn×d. Up to scaling, all vectors v in R(V), can
be written as v = Vc for some c ∈ Rd : ‖c‖ = 1. We
introduce d − 1 variables φ = [φ1, . . . , φd−1] ∈ Φd−1 =(
−π2 ,

π
2

]d−1
, and set c to be the following function of φ:

c(φ) =


sin(φ1)

cos(φ1) sin(φ2)
...

cos(φ1) cos(φ2) · · · sin(φd−1)
cos(φ1) cos(φ2) · · · cos(φd−1)

 ∈ Rd. (19)

In other words, φ1, . . . , φd−1 are the spherical coordinates
of c(φ). All unit vectors in Rd can be mapped to a spherical
coordinate vector φ ∈ (−π, π]×Φd−2. Restricting variable
φ1 to Φ limits c(φ) to half the d-dimensional unit sphere:
for any unit norm vector c, there exists φ ∈ Φd−1 such that
c = c(φ) or c = −c(φ).

Under (19), the vectors inR(V) can be described as a func-
tion of φ: R(V) = {±v(φ) = ±Vc(φ),φ ∈ Φd−1}. In
turn, the set of indices of the k largest nonnegative entries
of v(φ) is itself a function of φ, and

Sd =
⋃

φ∈Φd−1

{
I+
k (v(φ)) , I+

k (−v(φ))
}
.

Spannogram. The ith entry of v(φ) is

[v(φ)]i =Vi,1 sin(φ1) + · · ·+ Vi,d

d∏
l=1

cos(φil),

a continuous function of φ ∈ Φd−1; a (d−1)-dimensional
hypersurface in the d-dimensional space Φd−1 × R, for all
i ∈ [n]. The collection of hypersurfaces constitutes the
rank-d spannogram. As an example, Fig. 7 depicts the
spannogram of an arbitrary 4× 3 (d = 3) matrix V.

At any particular point φ ∈ Φd−1, assuming that no two
hypersurfaces intersect at φ, the set I+

k (v(φ)) can be read-
ily determined: sort the entries of v(φ) and pick the indices
of the at most k largest nonnegative entries. Note, however,
that constructing I+

k (v(φ)) does not require a complete
sorting the entries of v(φ): detecting the kth order entry
and the (at most) k − 1 nonnegative entries larger than that
can be done in O(n).

The key observation of our algorithm is that, due to
their continuity, the hypersurfaces will retain their sorting
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Figure 7. Spannogram of an arbitrary rank-3 matrix V ∈ R4×3.
Every surface is generated by one row of V. At every point φ =
[φ1, φ2], the surface values correspond to the entries of a vector
in the range of V.

around φ and hence, I+
k (v(φ)) tends to remain invariant.

Moving away from φ, I+
k (v(φ)) can only change if when

either the sign of a hypersurface or its order relative to other
hypersurfaces changes. In other words, I+

k (v(φ)) can only
change at points φ ∈ Φd−1 where (i) two hypersurfaces in-
tersect, or (ii) a hypersurface crosses the zero-hypersurface.
Henceforth, we will assume that V has n + 1 rows, where
the last row is the zero vector, 0d, generating the zero-
hypersurface. As a result, the points of interest lie in the
intersection of subsets of the n + 1 hypersurfaces in the
spannogram of V.

We have argued that in order to construct Sd, it suffices to
consider points corresponding to the intersection of pairs of
hypersurfaces. For d > 2, pairwise hypersurface intersec-
tions no longer correspond to single points. In the sequel,
however, we will show that the points of interest can be
further reduced to a finite set of points.

Let us examine when the set I+
k (v(φ)) changes from the

perspective of the ith hypersurface. That is, we ask what are
the points in Φd−1 where the ith index might join or leave
the candidate support set I+

k (v(φ)). We know it suffices to
examine only those points in Φd−1 at which the ith hyper-
surface intersects with another of the n + 1 hypersurfaces.
Let us focus on the intersection with the jth hypersurface,
j ∈ [n+ 1], j 6= i. We define

H(i, j) =
{
v(φ) : [v(φ)]i = [v(φ)]j , φ ∈ Φd−1

}
,

as the set of points lying in the intersection of hypersur-
faces i and j. These points form a (d − 2)-dimensional

hypersurface2. Further, let

Φ(i, j) = {φ : v(φ) ∈ H(i, j)} ,

be the corresponding φ’s. By definition, at every φ ∈
Φ(i, j), hypersurfaces i and j have the same values, and
in opposite directions over φ ∈ Φ(i, j) the relative order
of the two hypersurfaces changes. However, not all of the
points in Φ(i, j) are necessarily points of interest; it is not
necessary that I+

k (v(φ)) changes at every φ ∈ Φ(i, j). We
seek to restrict our attention to a smaller subset of points.

If at some φ ∈ Φ(i, j) the ith hypersurface is included or
excluded from I+

k (v(φ)), we ask what are those points
where index i might leave or join the candidate support
set. Once again, due to the continuity of the hypersurfaces,
the set I+

k (v(φ)) is locally invariant as we scan Φ(i, j).
The points of interest are those points at which the ith hy-
persurface intersects another hypersurface. Provided that
Φ(i, j) corresponds to points where the ith and jth hyper-
surfaces coincide, any intersection of the ith hypersurface
with a third hypersurface, say the l-th one, will be a joint
intersection of the three hypersurfaces {i, j, l}. The set of
points where the hypersurfaces {i, j, l} intersect is

H(i, j, l) ⊆ H(i, j),

for all l ∈ [n + 1]\{i, j}. Repeating this argument recur-
sively, we conclude that it suffices to examine the intersec-
tions of subsets of d hypersurfaces, H(i1, i2, . . . , id), for
all possible sets {i1, i2, . . . , id} ⊆ [n + 1]. Such intersec-
tions correspond to single points3, where d hypersurfaces
have the same value. By our perturbation argument, we
can assume that exactly (i.e., not more than) d hypersur-
faces intersects at that exact φ. If all d intersecting hy-
persurfaces or none of them are included or excluded from
I+
k (v(φ)), the candidate set does not change (at least from

the perspective of the ith hypersurface) around φ. That is,
index i neither leaves nor joins the candidate support set
at φ. On the contrary, if the d intersecting hypersurfaces
{i1, i2, . . . , id} are nonnegative and in the k-th order at φ,
then there are multiple candidate support sets associated
with the area around φ. In each of these candidates, only a
subset of {i1, i2, . . . , id} can be included in I+

k (v(φ)), due
to the constraint that |I+

k (v(φ))| ≤ k. However, hypersur-
faces {i1, i2, . . . , id} are the only ones that might join or
leave the candidate set at that particular point and there are
at most 2d−1 partitions of {i1, i2, . . . , id} into two subsets.
Hence, at most a constant number of candidates, readily
determined, is associated with each such intersection point.

2In the rank-2 case, the intersection was a single point.
3We assume that every d rows of V are linearly independent.

If that is not the case, we can ignore the
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Building Sd. We consider all points where d hypersur-
faces intersect, i.e., we find φ such that

[v(φ)]i1 = [v(φ)]i2 = . . . = [v(φ)]id ,

for all possible sets {i1, . . . , id} ⊆ [n + 1]. To that end, it
suffices to find φ where the pairwise equalities

[v(φ)]i1 = [v(φ)]i2 , . . . , [v(φ)]i1 = [v(φ)]id

are jointly satisfied, or, equivalently, to find c(φ) such that eTi1 − eTi2
...

eTi1 − eTid−1

Vc(φ) = 0d−1.

In other words, we seek the unique (up to scaling) vector in
the nullspace of the d− 1× d matrix multiplying c(φ).

At the intersection point, the hypersurfaces indexed by
{i1, . . . , id} are all equal. If all d intersecting hypersurfaces
are all (or none) included in I+

k (v(φ)), then any modifica-
tion in their sorting does not affect the set, in the sense that
none of these d hypersurfaces leaves or joins the set of k
largest nonnegative hypersurfaces. On the other hand, if the
d hypersurfaces are nonnegative and equal to the kth order
hypersurface, then only a subset of them can be included in
I+
k (v(φ)) at any point around the intersection point. Fur-

ther these are the only hypersurfaces that can leave or join
the set at that point. If 1 ≤ r ≤ d − 1 of them can be
included, then there must be at most

(
d
r

)
candidates associ-

ated with the cells around φ (or
(
d−1
r

)
if one of them is the

artificial zero hypersurface). That is, there can be at most(
d
d d2 e
)
≤ 2d−1 candidate support sets around φ.

We repeat the process for I+
k (−v(φ)). Therefore, a maxi-

mum of 2 ·2d−1 candidates are introduced at each intersec-
tion point, and

|Sd| ≤ 2d
(
n+ 1

d

)
= O(nd).

The candidates at each intersection point are determined in
linear time: determining the entries of v(φ) that are greater
than its k-th largest nonnegative entry can be done in linear
time, and the algorithm produces at most 2d−1 candidates
at each intersection point. We conclude that Sd can be con-
structed in O(nd+1).

C. Quadratic maximization over unit length
vectors in the intersection of halfspaces

We consider the constrained quadratic maximization

c? = arg max
‖c‖2=1,
Rc≥0

cTQc, (Pd)

where Q is a d×d symmetric matrix, and R is a real k×d
matrix. In general, (Pd) is NP-hard: for Q PSD and R
equal to the identity matrix Id, (Pd) reduces to the original
problem in (2). In this section, however, we consider the
case where the dimension d of the problem is a constant
and develop an O(kd) algorithm for the non-trivial task of
solving (Pd).

The d = 1 case. The optimization variable c is a scalar
in {+1,−1}, and R is a vector in Rk. If either R ≥ 0 or
−R ≥ 0, the optimal solution is c? = 1 or −1, respec-
tively. Otherwise, the problem is infeasible.

The d = 2 case. The d = 2 case is the simplest nontriv-
ial case. Let λ1 ≥ λ2, be the two eigenvalues of Q ∈ S2.
The corresponding eigenvectors u1,u2 form an orthonor-
mal basis of R2. Any unit length vector c can be expressed
as c(φ) = U [cos(φ), sin(φ)]

T , for some φ ∈ [0, 2π),
where U = [u1 u2].

The feasible region is an arc on the unit circle in the in-
tersection of k half-spaces (see Fig. 2 for an example). It
comprises vectors c(φ) with φ restricted in some interval
[φ1, φ2]. Note that φ1 and φ2 are points where at least one
linear constraint becomes active. Unless R is the zero ma-
trix, 0 ≤ |φ1 − φ2| ≤ π. If ±u1 lies in the feasible region,
then c? = ±u1: the leading eigenvector is the global un-
constrained maximum. The key observation is that if nei-
ther u1 or −u1 is feasible, the optimal solution coincides
with either c(φ1) or c(φ2). To verify that, let

Q(φ) = c(φ)TQc(φ) = cos2(φ)λ1 + sin2(φ)λ2

denote the quadratic objective in (P2) as a function of
φ. Q(φ) is differentiable with four critical points at φ =
0, π/2, π, and 3π/2. By assumption, φ = 0 and φ = π,
which correspond to c(φ)± u1, lie outside the feasible in-
terval [φ1, φ2]. Since 0 ≤ |φ1 − φ2| ≤ π, at most one of
the local minima φ = π/2 and φ = 3π/2 may lie in [φ1, φ2].
We conclude that either (i)Q (φ) is monotonically increas-
ing in [φ1, φ2], (ii) monotonically decreasing in [φ1, φ2], or
(iii) has a unique local minimum in (φ1, φ2). In either case,
Q (φ) attains its maximum at one φ1 and φ2.

The above motivate the following steps for solving (P2):

1. If ±Ru1 ≥ 0, then c? = ±u1.
2. Otherwise, initialize an empty collection C of candidate

solutions. For i = 1, . . . , k:
- Compute ci = ± [−Ri,2, Ri,1]

T
/‖Ri,:‖, the unit

norm vectors in the direction at which the ith inequal-
ity is active. If ±ci is feasible, include ±ci in C.

3. Return c? = arg maxc∈C cTQc.

The previous steps are formally presented in Algorithm 4.
Lemma C.6. Algorithm 4 computes the optimal solution
of (P2) with k linear inequality constraints in O(k2).
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Algorithm 4 Compute the solution c? of (P2)

input Q ∈ S2, R ∈ Rk×2

output c? = arg maxRc≥0,‖c‖2=1 cTQc
1: u1 ← leading eigenvector of Q
2: if ±Ru1 ≥ 0 then
3: c? ← ±u1

4: else
5: C = {}
6: for i = 1 to k do
7: ci ← [−Ri,2, Ri,1]

T
/‖Ri,:‖2

8: if R(±ci) ≥ 0 then
9: C ← C ∪ {±ci}

10: end if
11: end for {C = ∅ ⇒ (P2) infeasible}
12: c? ← arg maxc∈C cTQc
13: end if

Proof. There exist at most 2k + 2 candidate solutions, in-
cluding ±u1. Each candidate is computed in O(1), and its
feasibility is checked in O(k). In total, the collection C of
feasible candidate solutions is constructed in O(k2). The
optimal solution is determined via exhaustive comparison
among the candidates in C in O(k).

The arbitrary d case. We demonstrate an algorithm to
solve (Pd) for any arbitrary d. Our algorithm relies on gen-
eralizing the observations and ideas of the d = 2 case. In
particular, assuming that the feasible region is non-empty,
we will show the following claim:

Claim 1. Let u1 ∈ Rd be the leading eigenvector of Q. If
±u1 is feasible, c? = ±u1 is the optimal solution of (Pd).
Otherwise, at least one of the k linear constraints holds
with equality at c?, i.e., ∃i ∈ [k] such that Ri,:c? = 0.

Proof. Let Q = UΛUT be the eigenvalue decomposi-
tion of Q: the diagonal entries of Λ coincide with the
real eigenvalues of Q, λ1, . . . , λd in decreasing order, and
the columns of U with the corresponding eigenvectors
u1, . . . ,ud. The latter form an orthonormal basis for Rd.

Clearly, if either of ±u1 is feasible, the quadratic objective
attains its maximum value at c? = ±u1. In the sequel, we
are concerned with the case where both±u1 are infeasible.

Consider a feasible point c0, ‖c0‖ = 1, such that Rc0 > 0.
That is, c0 satisfies all linear constraints with strict inequal-
ity. If no such a point exists, the claim holds trivially. We
will show that c0 cannot be optimal.

In terms of the eigenbasis, we have c0 = Uµ, where
µ = UT c0 ∈ Rd, ‖µ‖ = 1. Let ĉ0 denote the orthogonal
projection of c0 on the subspace spanned by the trailing
eigenvectors u2, . . . ,ud, normalized to unit length. That
is, ĉ0 = 1

1−µ2
1

∑d
i=2 uiµi. The unit norm vectors in the

2-dimensional span of u1 and ĉ0 are all points of the form

α(φ) = U

[
1 0
0 µ2:d/(1− µ2

1)

] [
cos(φ)
sin(φ)

]
,

for φ ∈ [0, 2π). Note that α(0) = u1 and α(π) = −u1

are by assumption infeasible. Therefore, points α(φ) are
feasible only for φ restricted to some interval [φ1, φ2], with
0 ≤ |φ1−φ2| ≤ π. At the endpoints φ1 and φ2, at least one
of the inequality constraints becomes active. Further, there
exists a point φ0 = arccos

(
uT1 c0

)
∈ [φ1, φ2], such that

α(φ0) = c0. By assumption, Ri,:α(φ0) > 0, ∀i ∈ [k].

Let Q (φ) denote the objective function of (Pd) over the
unit norm vectors α(φ), as a function of φ. We will show
that Q (φ0) ≤ max{Q (φ1) , Q (φ2)}. We have

Q(φ) = α(φ)TUΛUTα(φ)

= λ1 · cos(φ)2 +
1

1− µ2
1

d∑
i=2

µ2
iλi · sin(φ)2

= λ1 +
1

1− µ2
1

(
µTΛµ− λ1

)
sin(φ)2.

Taking into account that λ1 ≥ µTΛµ, it is straightforward
to verify through the first derivative w.r.t. φ that Q (φ) has
four critical points at φ = 0, π/2, π and 3π/2. One of the
following holds: (i) Q (φ) is monotonically decreasing in
[φ1, φ2], (ii) Q (φ) is monotonically increasing in [φ1, φ2],
or (iii) a unique local minimum lies in (φ1, φ2). In either
case, the maximum value ofQ (φ) over [φ1, φ2] is achieved
at one of φ1 and φ2, which completes the proof.

According to Claim 1, at least one linear inequality con-
straint holds with equality at the optimal point c?. As-
sume that the ith linear constraint is such a constraint, i.e.,
Ri,:c? = 0. In the sequel, we investigate how this extra
assumption simplifies solving (Pd).

The constraint Ri,:c = 0 enforces a linear dependence on
the entries of c. Let j ∈ [d] be the index of a nonzero entry4

of Ri,:. Let c\j ∈ Rd−1 and Ri,\j ∈ R1×d−1 denote
the vectors obtained excluding the jth entry of c and Ri,:,
respectively. Then,

c = Hc\j , (20)

where

H =

 Ij−1×j−1 0j−1×d−j
−R−1

i,j Ri,\j
0d−j×j−1 Id−j×d−j

 ∈ Rd×d−1.

Let H = UHΣHVT
H be the compact singular value de-

composition of the rank-(d− 1) matrix H: UH ∈ Rd×d−1

4If no such j exists, the ith row of R is the zero vector. In that
case, the ith linear constraint is redundant and can be omitted.
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Figure 8. An instance of (P3). Feasible solutions lie in the inter-
section of half-spaces with the unit sphere (highlighted region).
The leading eigenvector ±u1 of Q is not feasible. Consider any
solution c0 in the interior of the feasible region. The highlited arc
corresponds to unit length points in the span of c0 and u1. The
objective value at c0 cannot exceed the value at the endpoints of
that arc.

consists of the d − 1 leading left singular vectors of H,
VH ∈ Rd−1×d−1 is a unitary matrix comprising the right
singular vectors, and ΣH is a diagonal matrix containing
the d− 1 nonzero singular values of H.

Define ĉ = ΣHVT
Hc\j ∈ Rd−1. Through (20), the origi-

nal variable c can be expressed in terms of ĉ: c = UH ĉ.
Substituting c in (Pd) accordingly, we conclude that in or-
der to compute the solution to (Pd), it suffices to compute

ĉ(i) = arg max
RUH ĉ≥0
‖UH ĉ‖=1

ĉT
(
UT
HQUH

)
ĉ. (21)

The optimal solution of (Pd) will then be c(i) = UH ĉ(i),
where the superscript is used to remind that c(i) is optimal
under the assumption that the ith linear inequality constraint
is active. In practice, it is not known which constraints
are active at the globally optimal solution c?. However, on
principle, we can compute k candidates c(i), i ∈ [k], one
for each linear inequality constraint in R, and determine c?
via exhaustive comparison.

It remains to show that we can efficiently solve (21). Due
to the fact that the columns of UH are orthonormal, the
requirement ‖UH ĉ‖ = 1 is equivalent to ‖ĉ‖ = 1, and
(21) becomes

ĉ(i) = arg max
R(i)ĉ≥0
‖ĉ‖2=1

ĉTQ(i)ĉ, (P
(i)
d−1)

with R(i) = RUH and Q(i) = UT
HQUH . One can verify

that the new optimization is identical in form to (Pd), but
the dimension of the unknown variable is reduced to d− 1.
Further, the ith row of R(i) is the all zero vector, effectively
decreasing the number of linear constraints to k − 1.

The algorithm. The above discussion motivates a recur-
sion for solving (Pd). The procedure is outlined in the fol-
lowing steps and is formally presented in Algorithm 5.

Algorithm 5 Compute the solution c? of (Pd)

input Q ∈ Sd, R ∈ Rk×d
output c? ∈ Rd : c? = arg maxRc≥0,‖c‖2=1 cTQc

1: if d = 2 then
2: c? ← solve (P2 [Q,R])
3: end if
4: u1 ← leading eigenvector of Q
5: if R (±u1) ≥ 0 then
6: c? ← ±u1

7: else
8: C = {} {Set of candidate solutions}
9: for i = 1 to k do

10: j = min {l ∈ [d] : Ril 6= 0}

11: H←

[
Ij−1×j−1 0j−1×d−j

−R−1
i,j Ri,\j

0d−j×j−1 Id−j×d−j

]
12: UH ,ΣH ,VH ← svd(H)
13: Q(i) ← UH

TQUH {∈ Sd−1 }
14: R(i) ← R\i,:UH {∈ Rk−1×d−1}

15: ĉ(i) ← solve
(
P

(i)
d−1

[
Q(i), R(i)

])
{∈ Rd−1}

16: c(i) ← UH ĉ(i) {∈ Rd}
17: C ← C ∪ {c(i)} {|C| ≤ k}
18: end for
19: c? ← arg maxc∈C

(
cTQc

)
20: end if

1. If d = 2, compute and return the optimal solution ac-
cording Algorithm 4.

2. Compute u1 ∈ Rd, the leading eigenvector of Q. If
±u1 is feasible, return c? = ±u1.

3. Otherwise, for i = 1, . . . , k:

- Form the (d−1)-dimensional problem (P
(i)
d−1), setting

the ith linear inequality constraint active.

- Solve (P
(i)
d−1) recursively and obtain a candidate solu-

tion c(i) of (Pd). Include c(i) in C, the collection of
candidate solutions.

4. Return c? = arg maxc∈C cTQc.

Lemma C.7. Algorithm 5 solves (Pd) in O(kd).

Proof. Let C(d, k) denote the complexity of solving (Pd)
with k linear inequality constraints using Algorithm 5. The
leading eigenvector of Q is computed in O(d3) and its
feasibility can be verified in O(dk). Each of the k sub-
problems (P

(i)
d−1) of dimension d − 1 with k − 1 inequali-

ties can be formulated in O(d3k) and solved recursively in
C(d − 1, k − 1). The maximum recursion depth is d − 2
and the base problem (P2) is solved in O(k2) by Alg. 4. In
total, C(d, k) = k · C (d− 1, k − 1) + O(d3k2), which in
turn yields C(d, k) = O

(
kd
)
.
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D. Near-Linear Time Nonnegative SPCA
Alg. 1 approximates the nonnegative, k-sparse principal
component of an n× n PSD matrix A,

x? = arg max
x∈Snk

xTAx,

by efficiently solving the nonnegative sparse PCA problem
on Ad, the best rank-d approximation of A. More pre-
cisely, Alg. 1 computes and outputs

xd = arg max
Snk

xTAdx, (22)

in time polynomial in n, for any constant d. The output xd
is a surrogate for the desired vector x?.

Albeit polynomial in n, the computational complexity of
Alg. 1 can be impractical even for moderate values of n.
In this section, we develop Algorithm 3, a simple ran-
domized procedure for approximating the nonnegative, k-
sparse principal component of a PSD matrix in time almost
linear in n. Alg. 3 relies on the same core ideas as Alg. 1:
solve the nonnegative sparse PCA problem on a rank-dma-
trix Ad recasting the maximization in (22) into a series of
simpler problems. But instead of computing the exact so-
lution xd of the rank-d nonnegative PCA problem, Alg. 3
settles for an approximate solution x̂d computed in near-
linear time. This second level of approximation introduces
an additional error: x̂d may be a slightly worse approxima-
tion of x? compared to xd. That extra approximation error,
however, can be made arbitrarily small.

Lemma D.8. Let A be an n × n PSD matrix given as in-
put to Alg. 3, along with sparsity parameter k ∈ [n] and
accuracy parameters d ∈ [n] and ε ∈ (0, 1]. Let Ad be the
best rank-d approximation of A, and xd its nonnegative, k-
sparse principal component. Alg. 3 outputs a nonnegative,
k-sparse, unit norm vector x̂d such that

x̂Td Adx̂d ≥ (1− ε) · xdTAdxd,

with probability at least 1 − 1/n, in time O
(
ε−d · n log n

)
plus the time required to compute the d leading eigenvec-
tors of A.

The lemma follows from the analysis of Alg. 3, which is
the focus of Section D.1, and its proof is deferred until the
end of that section. According to the lemma, the output
x̂d of Alg. 3 is a factor (1 − ε) approximation of xd, the
nonnegative, k-sparse principal component of Ad, in terms
of explained variance on the rank-d matrix Ad. Our ulti-
mate goal, however, is to characterize the quality of x̂d as a
surrogate for x?, the nonnegative, k-sparse principal com-
ponent of A. The approximation guarantees of Alg. 3 are
established in the following theorem.

Theorem 2. For any n×n PSD matrix A, sparsity param-
eter k, and accuracy parameters d ∈ [n] and ε ∈ (0, 1],

Alg. 3 outputs a nonnegative, k-sparse, unit norm vector
x̂d such that

x̂Td Ax̂d ≥ (1− ε) · ρd · x?TAx?,

with probability at least 1 − 1/n, in time O
(
ε−d · n log n

)
plus the time required to compute the d leading eigenvec-
tors of A.

Proof. For the output x̂d of Alg. 3, we have

x̂Td Ax̂d = x̂Td Adx̂d + x̂Td (A−Ad) x̂d
(α)

≥ (1− ε) · xdTAdxd + x̂Td (A−Ad) x̂d
(β)

≥ (1− ε) · xdTAdxd

= (1− ε) · OPTd
= (1− ε) · ρd · OPT,

where inequality (a) follows from Lemma D.8, and (β)
from the fact that A − Ad is a PSD matrix. Note that by
Lemma A.5, ρd = OPTd/OPT satisfies

ρd ≥ max

{
k

2n
,

1

1 + 2nkλd+1/λ1

}
.

The complexity of Alg. 3 is established in Lemma D.8,
which completes the proof.

D.1. Analysis of Algorithm 3

In this subsection, we examine Alg. 3 in detail and gradu-
ally build towards establishing Lemma D.8.

Given an n × n PSD matrix A and an accuracy parameter
d, Alg. 3 first computes the d leading eigenvectors of A to
obtain the rank-d approximation Ad. Let V be an n × d
square root of Ad. That is, Ad = VVT . In subsection 3.2,
we showed that the rank-d nonnegative sparse PCA prob-
lem on Ad can be written as

max
x∈Snk

xTAdx = max
c∈Sd,

max
x∈Snk

(
(Vc)

T
x
)2

. (23)

For a fixed c, the optimal x can be easily determined as
described in Section 3.1. In principle, scanning all vectors
c on the surface of the d-dimensional unit sphere Sd would
suffice to detect the nonnegative, k-sparse principal com-
ponent xd.

Alg. 3 approximately solves the double maximization in
(23) considering a finite set of m = O(ε−d · log n) points
c1, . . . , cm drawn randomly and independently, uniformly
distributed over Sd. Each random point ci corresponds to
an n-dimensional vector ai = Vci in the range of Ad,
for which Alg. 3 solves the rank-1 nonnegative sparse PCA
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problem

max
x∈Snk

(
(Vci)

T
x
)2

= max
x∈Snk

(
ai
Tx
)2
.

The rank-1 problem is solved in time O(n) as described
in Section 3.1, and yields a candidate solution x. Alg. 3
outputs the candidate that maximizes ‖VTx‖2 = xTAdx.

In the following, we argue that them = O(ε−d · log n) ran-
dom samples suffice to establish the approximation guar-
antees of Lemma D.8, and in turn Theorem 2.

Randomized ε-nets. An ε-net on the unit sphere Sd is
a set N d

ε of points on Sd such that for any point on Sd
there exists a point inN d

ε within euclidean distance ε. More
formally,
Def. 2. An ε-net of Sd is a set N d

ε ⊂ Sd such that

∀c ∈ Sd, ∃ ĉ ∈ N d
ε : ‖c− ĉ‖2 ≤ ε.

Consider a (ε/2)-net N d
ε/2 on Sd for some given constant

0 < ε ≤ 1. The following lemma states that if we solve
the maximization in (23) over the points c in the finite set
of points N d

ε/2 instead of the entire sphere Sd, we obtain a
solution that is within a factor (1− ε) from OPTd.
Lemma D.9. Let N d

ε/2 be a ε/2-net of Sd. Then,

(1− ε) · OPTd ≤ max
c∈Nd

ε/2

max
x∈Snk

(
cTVTx

)2 ≤ OPTd.

Proof. The upper bound follows from the fact that N d
ε/2 ⊆

Sd. For the lower bound, let (xd, cd) denote the optimal
solution of (23), i.e.,

OPTd = (cdV
Txd)

2.

By definition, the ε/2-netN d
ε/2 contains a vector ĉd such that

cd = ĉd + r for some r ∈ Rd with ‖r‖ ≤ ε/2. Then,√
OPTd = |cTd VTxd| = |(ĉd + r)TVTxd|

(α)

≤ |ĉTd VTxd|+
ε

2
· ‖VTxd‖

= |ĉTd VTxd|+
ε

2
·
√
OPTd, (24)

where (α) is due to the triangle inequality, the Cauchy-
Schwartz inequality, and the fact that ‖r‖ ≤ ε/2. From
(24), it follows that(

ĉTd VTxd
)2 ≥ (1− ε/2)

2 · OPTd ≥ (1− ε) · OPTd.

Noting that

max
c∈Nd

ε/2

max
x∈Snk

(
cTVTx

)2 ≥ (
ĉTd VTxd

)2
completes the proof.

There are many constructions for ε-nets on the sphere, both
deterministic and randomized (???). In the following we
review a simple randomized construction, initially studied
by Wyner (?) in the asymptotic d→∞ regime. First, note
the following existential result.

Lemma D.10 ((?)). For any 0 < ε ≤ 1, there exists an
ε-net N d

ε of the unit sphere Sd with cardinality at most
mε,d ≤ (1 + 2/ε)

d
.

Consider a set of sphere-caps of radius ε̂ centered at the
points of the ε̂-net N d

ε̂ . The caps cover the entire sphere
surface. It can be easily shown, based on a simple trian-
gle inequality, that an arbitrary collection of points com-
prising at least one point from each cap, forms a (2ε̂)-
net. Further, using standard balls and bins arguments,
we conclude that randomly and independently drawing
O(mε̂,d · log (n ·mε̂,d)) points uniformly distributed over
Sd suffice for at least one random point to lie in each sphere
cap with probability at least 1−1/n. That is,O

(
ε̂−d · log n

)
points suffice to form a (2ε̂)-net. Hence, for ε̂ = ε/4, we
will obtain an ε/2-net.

Lemma D.11. Randomly and independently drawing
O
(
ε−d · log n

)
points uniformly distributed on Sd suffices

to form an ε/2-net of Sd, with probability at least 1− 1/n.

Proof of Lemma D.8 By Lemma D.11, theO(ε−d ·log n)
points drawn randomly and independently uniformly over
Sd, form an ε/2-net N d

ε/2, with probability at least 1 − 1/n.
Alg. 3 solves the double maximization problem in (23) over
the points in N d

ε/2, and outputs a nonnegative, k-sparse,
unit-norm vector x̂d. By Lemma D.9, x̂d is within factor of
(1 − ε) from OPTd, which proves the desired approxima-
tion guarantee.

Alg. 3 examines O(ε−d log n) points in the range of the
n × d matrix V. Each sample yields a candidate solution
computed in O(n). The total computational complexity is
O(ε−d · n log n), plus the time required to compute the d
columns of V, i.e., the d leading eigenvectors of A, which
completes the proof. �

E. Power Law Spectral Decay
The approximation guarantees of our algorithm are contin-
gent on the spectrum of the data covariance matrix: the
sharper the eigenvalue decay, the tighter the approxima-
tion. In this section, we provide empirical evidence that
real datasets often exhibit a steep decline in the spectrum
of their empirical covariance matrix. In particular, the
eigenvalues of the later approximately decay according to
a power law:

λi ≤ c · λ1 · iα,

for some constant c and α ≥ 1.
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(a) CBCL Face Dataset
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(b) Leukemia Dataset
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(c) Low Res. Spectr. Dataset
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(d) Isolet Dataset

Figure 9. Spectrum of the empirical covariance matrix of various datasets. The eigenvalues exhibit approximately power law decay.
(Datasets 9(b), 9(c) and 9(d) are available at (Bache & Lichman, 2013)).

Fig. 9 depicts the leading eigenvalues of the empirical co-
variance matrix of various datasets, normalized by the max-
imum eigenvalue, λ1. In all depicted cases, the eigenvalues
can be upper bounded by a power law decay function.

F. NP-Hardness of Nonnegative PCA
We provide a proof of the NP-hardness of the nonnegative
(and in turn the nonnegative sparse) PCA problem with a
reduction from the problem of checking whether a matrix is
copositive. A matrix M ∈ Sn is copositive iff xTMx ≥ 0
for all vectors x in the nonnegative orthant:

M is copositive ⇔ M ∈ Sn : xTMx ≥ 0, ∀x ≥ 0.

Checking whether a matrix is copositive is a co-NP com-
plete (Murty & Kabadi, 1987) decision problem: any vec-
tor x for which xTMx < 0 serves as a certificate to verify
in polynomial time that M is not copositive.

In order to check whether a matrix M is copositive, it suf-
fices to minimize the quadratic xTMx over all nonnegative
vectors x: M is not copositive if and only if the minimum

value is negative. Observing that the sign of the quadratic
form does not change if x is scaled by a positive scalar,
without loss of generality restrict our attention to unit norm
vectors x and solve

OPT = min
x≥0
‖x‖=1

xTM x. (P )

Let λ1, . . . , λn be the eigenvalues of M in decreasing or-
der. The matrix M = λ1I−M is positive semidefinite: its
eigenvalues are λ1 − λi ≥ 0, for 1 ≤ i ≤ n. Moreover, for
any unit length vector x, xTMx = λ1 − xTMx. Hence,
(P ) is equivalent to

OPT = max
x≥0
‖x‖=1

xTMx, (P )

the nonnegative PCA problem on the PSD matrix M. Solv-
ing (P ) suffices to check whether M is copositive since
OPT ≤ 0 if and only if OPT ≥ λ1. We conclude that (P )
is NP-hard.


