Sparse PCA via Bipartite Matchings

Megasthenis Asteris, Dimitris Papailiopoulos, Anastasios Kyrillidis, Alex Dimakis

Sparse PCA

Given a covariance matrix A, find direction of maximum variance, as a linear combination of only a few variables:

Example: NY Times text corpus

- Find 8 components, each 10-sparse.

- Sparse disjoint components interpreted as distinct topics.

_	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	Topic 7	Topic 8
1:	percent	zzz_united_states	zzz_bush	company	team	cup	school	zzz_al_gore
2:	million	zzz_u_s	official	companies	game	minutes	student	zzz_george_bush
3:	money	zzz_american	government	market	season	add	children	campaign
4:	high	attack	president	stock	player	tablespoon	women	election
5:	program	military	group	business	play	oil	show	plan
6:	number	palestinian	leader	billion	point	teaspoon	book	tax
7:	need	war	country	analyst	run	water	family	public
8:	part	administration	political	firm	right	pepper	look	zzz_washington
9:	problem	zzz_white_house	american	sales	home	large	hour	member
10:	com	games	law	cost	won	food	small	nation

One approach: Deflation

Compute components one-by-one.

- Compute one sparse PC.
- Remove used variables from the dataset.

- Repeat.

Problem: $\begin{bmatrix} 1 & 0 & 0 & \epsilon \\ 0 & \delta & 0 & 0 \\ 0 & 0 & \delta & 0 \end{bmatrix}$ Given a 4×4 PSD matrix **A**, find two 2-sparse components $\mathbf{x}_1, \mathbf{x}_2$ with disjoint supports, that maximize $\mathbf{x}_1^\top \mathbf{A} \mathbf{x}_1 + \mathbf{x}_2^\top \mathbf{A} \mathbf{x}_2$. $\epsilon \quad 0 \quad 0$

Simple but,

suboptimal.

Solution I: Deflation

Solution II: Joint Optimization

Input: *i*) $d \times d$ rank-*r* PSD matrix **A**, *ii*) *k*: desired # of components, *iii*) $s \notin \text{nnz entries/component}$, iv) accuracy $\epsilon \in (0, 1)$.

Output: $\overline{\mathbf{X}} \in \mathcal{X}_k$ such that

$$\operatorname{Tr}\left(\overline{\mathbf{X}}^{\top}\mathbf{A}\overline{\mathbf{X}}\right) \geq (1-\epsilon) \cdot \mathsf{OPT},$$

in time
$$T_{\mathsf{SVD}}(r) + O\left(\left(\frac{4}{\epsilon}\right)^{r \cdot k} \cdot d \cdot (s \cdot k)^2\right).$$

 $\mathcal{I}_1, \ldots, \mathcal{I}_k$: disjoint support sets of the k components (columns of $\widehat{\mathbf{X}}$).

(*)
$$\sum_{j=1}^{k} \left\langle \widehat{\mathbf{X}}^{j}, \mathbf{W}^{j} \right\rangle^{2} = \sum_{j=1}^{k} \sum_{i \in \mathcal{I}_{j}} W_{ij}^{2}.$$
 Unknown supports. Find them.

d vertices representing the d dimensions

Operates by recasting MultiSPCA into multiple instances of the bipartite maximum weight matching problem.

Provable approximation guarantees.

- Complexity:

- Low-order polynomial in the ambient dimension d, but Exponential in the intrinsic dimension r.

> Still much better than naive brute force.

Separates ambient and intrinsic dimension.

In reality, data is not low rank.

 $(Or equiv. \mathbf{A}_{d \times d})$

Theorem II: Algo Guarantees (Full rank)

Input: i) $n \times d$ input data matrix **S** (or covariance $\mathbf{A} = \frac{1}{n} \cdot \mathbf{S}^{\top} \mathbf{S}$) *ii)* k: # of components, *iii)* s # nnz entries/component, iv) accuracy $\epsilon \in (0, 1), v$) r: rank of approximation, **Output:** $\mathbf{X}_{(r)} \in \mathcal{X}_k$ such that

 $\operatorname{Tr}\left(\mathbf{X}_{(r)}^{\top}\mathbf{A}\mathbf{X}_{(r)}\right) \geq (1-\epsilon) \cdot \mathsf{OPT} - 2 \cdot k \cdot \|\mathbf{A} - \overline{\mathbf{A}}\|_{2},$ in time $T_{\mathsf{SKETCH}}(r) + T_{\mathsf{SVD}}(r) + O\left(\left(\frac{4}{\epsilon}\right)^{r \cdot k} \cdot d \cdot (s \cdot k)^2\right).$

Extra time: for computing the sketch

In Practice

- Taking too long?

- Example: Leukemia Dataset

SPCA on a Low Dim Sketch

However, maybe close to low rank.

 \rightarrow Spectrum of **A** may be sharply decaying \rightarrow A is well approximated by a low rank matrix.

Extra error: depends on the quality of the sketch.

- Run our algorithm and stop it any time.

 \rightarrow Ignore the theoretical guarantees

 \rightarrow Still finds solutions with higher explained variance, compared to deflation based methods.

- # samples n = 72, dimension d=12582 (probe sets) Compare to deflation using TPower, EM-SPCA and SpanSPCA for the single component SPCA problem.

Natasha Studios®