
Input: i) n⇥ d input data matrix S (or covariance A =

1/n · S>S)
ii) k: # of components, iii) s # nnz entries/component,

iv) accuracy ✏ 2 (0, 1), v) r: rank of approximation,

Output: X(r) 2 Xk such that
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Theorem II: Algo Guarantees (Full rank)

Sparse PCA via Bipartite Matchings
Megasthenis Asteris, Dimitris Papailiopoulos, Anastasios Kyrillidis, Alex Dimakis

[ Multiple Sparse Components ]

Given a covariance matrix     , find direction of maximum variance, as 
a linear combination of only a few variables:
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Solution I: Deflation
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Solution II: Joint Optimization

[ One approach: Deflation ]

[ Sparse PCA ]
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Find multiple sparse components  
with disjoint support sets:

Example: NY Times text corpus 
- Find 8 components, each 10-sparse. 
- Sparse disjoint components interpreted as distinct topics.

[ SPCA on a Low Dim Sketch]

Xk =

(
X 2 Rd⇥k : kXjk2 = 1, kXjk0 = s, 8j

supp(Xi) \ supp(Xj) = ;, 8 i, j
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[ In Practice ]
- Taking too long? 
- Run our algorithm and stop it any time. 
→ Ignore the theoretical guarantees 
→ Still finds solutions with higher explained variance, 
     compared to deflation based methods.

Example: Leukemia Dataset 
- # samples n = 72, dimension d=12582 (probe sets) 
- Compare to deflation using TPower, EM-SPCA and SpanSPCA  

for the single component SPCA problem. 
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Problem: 
Given a 4 x 4 PSD matrix    , find two 2-sparse  
components            with disjoint supports, that 
maximize                             .                             
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Compute components one-by-one. 
- Compute one sparse PC. 
- Remove used variables from the dataset. 
- Repeat.

 

A

Theorem I: Algo Guarantees (Low rank)
Input: i) d⇥d rank-r PSD matrixA, ii) k: desired # of components,

iii) s # nnz entries/component, iv) accuracy ✏ 2 (0, 1).

Output: X 2 Xk such that
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Observation I 
If we knew the support sets                 , we could determine the 
optimal value based on Cauchy-Schwarz: 
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Maximum Weight Matching on G: 
- Each vertex on the left is mapped to a vertex on the right. 
→    indices are assigned to each “support set”. 

- Each right vertex is used at most once. 
→ Support sets are disjoint. 

- Maximum weight = maximum objective in (✳). 

Consider the complete bipartite graph G on                vertices:k · s+ d

[ Subroutine ]
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In reality, data is not low rank. 
However, maybe close to low rank.  
→ Spectrum of      may be sharply decaying 
→      is well approximated by a low rank matrix.
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[ Our Algorithm ]
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Matrix     is PSD and can be decomposed  
into                  . 

Observation I

For multiple components…

Observation II
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In turn, a variational characterization is the following:

Fix the value of the          variable    .  Let                  .r ⇥ k C

→ SPCA reduces to determining the optimal    . 
→ Low dimensional variable: sample to find the best.
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Input:            rank-    PSD 
- Initialize empty collection  
- Compute                               (         ) 
- For  

 Sample  
 Compute 
 Solve 

 Add     to the collection    . 
Output: Best solution       in collection    .
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[ Algorithm ]

S

AThink of the d x d matrix    as having rank r. For now r < d. 

[ Summary ]
- First algorithm for multi-component SPCA with disjoint supports; 

Operates by recasting MultiSPCA into multiple instances of the 
bipartite maximum weight matching problem. 

- Provable approximation guarantees. 
- Complexity:  

- Low-order polynomial in the ambient dimension d, but 
- Exponential in the intrinsic dimension r.
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Input:           matrix  
             : # nnz entries / column of     ) 
1. Construct bipartite graph G as above. 
2. Compute maximum weight matching 

to determine the supports  
3. Compute each column of     for the given  

support based on Cauchy-Schwarz. 
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[ Algorithm ]
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