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ABSTRACT
Distributed storage systems for large clusters typically use
replication to provide reliability. Recently, erasure codes
have been used to reduce the large storage overhead of three-
replicated systems. Reed-Solomon codes are the standard
design choice and their high repair cost is often considered
an unavoidable price to pay for high storage efficiency and
high reliability.

This paper shows how to overcome this limitation. We
present a novel family of erasure codes that are efficiently
repairable and offer higher reliability compared to Reed-
Solomon codes. We show analytically that our codes are
optimal on a recently identified tradeoff between locality
and minimum distance.

We implement our new codes in Hadoop HDFS and com-
pare to a currently deployed HDFS module that uses Reed-
Solomon codes. Our modified HDFS implementation shows
a reduction of approximately 2× on the repair disk I/O and
repair network traffic. The disadvantage of the new coding
scheme is that it requires 14% more storage compared to
Reed-Solomon codes, an overhead shown to be information
theoretically optimal to obtain locality. Because the new
codes repair failures faster, this provides higher reliability,
which is orders of magnitude higher compared to replica-
tion.

1. INTRODUCTION
MapReduce architectures are becoming increasingly pop-
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ular for big data management due to their high scalabil-
ity properties. At facebook, large analytics clusters store
petabytes of information and handle multiple analytics jobs
using Hadoop MapReduce. Standard implementations rely
on a distributed file system that provides reliability by repli-
cation. Typically, triple replication is used for most files, of-
ten ensuring one replica of each block is placed in the same
rack to ensure fast repairs when nodes fail. The major dis-
advantage of replication is the very large storage overhead
of 200%, which reflects on the cluster costs. This overhead
is becoming a major bottleneck as the amount of managed
data grows faster than data center infrastructure.

For this reason, facebook and many others are transition-
ing to erasure coding techniques (typically, classical Reed-
Solomon codes) to introduce redundancy while saving stor-
age [4, 22], especially for the data that is more archival
in nature. In this paper we show that classical codes are
highly suboptimal for distributed MapReduce architectures.
We introduce new erasure codes that address the main chal-
lenges of distributed data reliability and information theo-
retic bounds that show the optimality of our construction.
We rely on measurements from a large facebook produc-
tion cluster (more than 3000 nodes, 30 PB of logical data
storage) that uses Hadoop MapReduce for data analytics.
We recently started deploying an open source HDFS Mod-
ule called HDFS RAID ([3, 9]) that relies on Reed-Solomon
(RS) codes. In HDFS RAID, the replication factor of “cold”
(i.e., rarely accessed) files is lowered to 1 and a new parity
file is created, consisting of parity blocks.

Using the parameters of facebook clusters, the data blocks
of each large file are grouped in stripes of 10 and for each
such set, 4 parity blocks are created. This system (called
a RS (10, 4)) can tolerate any 4 block failures and has a
storage overhead of only 40%. RS codes are therefore signif-
icantly more robust and storage efficient compared to repli-
cation. In fact, this storage overhead is the minimal possible,
for this level of reliability [8]. Codes that achieve this op-
timal storage-reliability tradeoff are called Maximum Dis-
tance Separable (MDS) [31] and Reed-Solomon codes [28]



form the most widely used MDS family.
Classical erasure codes are suboptimal for distributed en-

vironments because of the so-called Repair problem: When a
single node fails, typically one block is lost from each stripe.
RS codes are usually repaired with the simple method that
requires transferring 10 blocks and recreating the original 10
data blocks even if a single block is lost [29], hence creating
a 10× overhead in repair bandwidth and disk I/O.

Recently, information theoretic results established that it
is possible to repair erasure codes with much less network
bandwidth compared to this naive method [7]. There has
been significant amount of very recent work on designing
such efficiently repairable codes, see section 6 for an overview
of this literature.

Our Contributions: We introduce a new family of era-
sure codes called Locally Repairable Codes (LRCs), that are
efficiently repairable both in terms of network bandwidth
and disk I/O. We analytically show that our codes are in-
formation theoretically optimal in terms of their locality,
i.e., the number of other blocks needed to repair single block
failures. We present both randomized and explicit LRC con-
structions starting from generalized Reed-Solomon parities.

We also design and implement HDFS-Xorbas, a module
that replaces Reed-Solomon codes with LRCs in HDFS-
RAID. We evaluate HDFS-Xorbas on experiments on Ama-
zon EC2 and a cluster in social network X. Our experiments
show that Xorbas enables approximately a 2× reduction in
disk I/O and repair network traffic compared to the Reed-
Solomon code currently used in production. The disadvan-
tage of the new code is that it requires 14% more storage
compared to RS, an overhead shown to be information the-
oretically optimal for the obtained locality.

One interesting side benefit is that because Xorbas re-
pairs failures faster, this provides higher availability, due to
more efficient degraded reading performance. Under a sim-
ple Markov model evaluation, Xorbas has 2 more zeros in
Mean Time to Data Loss (MTTDL) compared to RS (10, 4)
and 6 more zeros compared to 3-replication.

1.1 Importance of repair traffic
At X, large analytics clusters store petabytes of informa-

tion and handle multiple MapReduce analytics jobs.
In a 3000 node production cluster storing approximately

230 million blocks (each of size 256MB), only 8% of the data
is currently RS encoded (‘RAIDed’). Our goal is to design
more efficient coding schemes that would allow this fraction
to increase, hence saving petabytes of storage.

Figure 1 shows a recent trace of node failures in this pro-
duction cluster. It is quite typical to have 20 or more node
failures per day that trigger repair jobs, even when most re-
pairs are delayed to avoid transient failures. A typical data
node will be storing approximately 15 TB and the repair
traffic with the current configuration is estimated around
10 − 20% of the total average of 2 PB/day cluster network
traffic. As discussed, RS encoded blocks require approxi-
mately 10× more network repair overhead per bit compared
to replicated blocks. We estimate that if 50% of the cluster
was RS encoded, the repair network traffic would completely
saturate the cluster network links.

There are four additional reasons why efficiently repairable
codes are becoming increasingly important in coded storage
systems. The first is the issue of degraded reads. Transient
errors with no permanent data loss correspond to 90% of
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Figure 1: Number of failed nodes over a single month period
in a 3000 node production cluster of X.

data center failure events [10, 22]. During the period of a
transient failure event, block reads of a coded stripe will be
degraded if the corresponding data blocks are unavailable.
In this case, the missing data block can be reconstructed by
a repair process, which is not aimed at fault tolerance but at
higher data availability. The only difference with standard
repair is that the reconstructed block does not have to be
written in disk. For this reason, efficient and fast repair can
significantly improve data availability.

The second is the problem of efficient node decommis-
sioning. Hadoop offers the decommission feature to retire
a faulty data node. Functional data has to be copied out
of the node before decommission, a process that is compli-
cated and time consuming. Fast repairs allow to treat node
decommissioning as a scheduled repair and start a MapRe-
duce job to recreate the blocks without creating very large
network traffic.

The third reason is that repair influences the performance
of other concurrent MapReduce jobs. Several researchers
have observed that the main bottleneck in MapReduce is
the network [5]. As mentioned, repair network traffic is cur-
rently consuming a non-negligible fraction of the cluster net-
work bandwidth. This issue is becoming more significant as
the disk capacity is increasing disproportionately fast com-
pared to network bandwidth in data centers. This increasing
storage density trend emphasizes the importance of local re-
pairs when coding is used.

Finally, local repair would be a key in facilitating geo-
graphically distributed file systems across data centers. Geo-
diversity has been identified as one of the key future direc-
tions for improving latency and reliability [15]. Tradition-
ally, sites used to distribute data across data centers via
replication. This, however, dramatically increases the total
storage cost. Reed-Solomon codes across geographic loca-
tions at this scale would be completely impractical due to
the high bandwidth requirements across wide area networks.
Our work makes local repairs possible at a marginally higher
storage overhead cost.

Replication is obviously the winner in optimizing the four
issues discussed, but requires a very large storage overhead.
On the opposing tradeoff point, MDS codes have minimal
storage overhead for a given reliability requirement, but suf-
fer in repair and hence in all these implied issues. One way
to view the contribution of this paper is a new intermediate
point on this tradeoff, that sacrifices some storage efficiency
to gain in these other metrics.

The remainder of this paper is organized as follows: We



initially present our theoretical results, the construction of
Locally Repairable Codes and the information theoretic op-
timality results. We defer the more technical proofs to the
Appendix. Section 3 presents the HDFS-Xorbas architec-
ture and Section 4 discusses a Markov-based reliability anal-
ysis. Section 5 discusses our experimental evaluation on
Amazon EC2 and X’s cluster. We finally survey related
work in Section 6 and conclude in Section 7.

2. THEORETICAL CONTRIBUTIONS
Maximum distance separable (MDS) codes are often used

in various applications in communications and storage sys-
tems [31]. A (k, n − k)-MDS code1 of rate R = k

n
takes a

file of size M , splits it in k equally sized blocks, and then
encodes it in n coded blocks each of size M

k
. Here we as-

sume that our file has size exactly equal to k data blocks
to simplify the presentation; larger files are separated into
stripes of k data blocks and each stripe is coded separately.

A (k, n − k)-MDS code has the property that any k out
of the n coded blocks can be used to reconstruct the entire
file. It is easy to prove that this is the best fault tolerance
possible for this level of redundancy: any set of k blocks has
an aggregate size of M and therefore no smaller set of blocks
could possibly recover the file.

Fault tolerance is captured by the metric of minimum dis-
tance.

Definition 1 (Code Minimum Distance:). The min-
imum distance d of a code of length n, is equal to the mini-
mum number of erasures of coded blocks after which the file
cannot be retrieved.

MDS codes, as their name suggests, have the largest possi-
ble distance which is dMDS = n − k + 1. For example the
minimum distance of (10,4) RS is n−k+1 = 5 which means
that five or more block erasures are needed to create data
loss.

The second metric we will be interested in is Block Local-
ity:

Definition 2 (Block Locality). An (k, n − k) code
has block locality r, when each coded block is a function of
at most r other coded blocks of the code.

Codes with block locality r have the property that, upon
any single block erasure, fast repair of the lost coded block
can be performed by computing a function on r existing
blocks of the code. This concept was recently and indepen-
dently introduced in [12, 25, 26].

When we require small locality, each single coded block
should be repairable by using only a small subset of existing
coded blocks r << k, even when n, k grow. The following
fact shows that locality and good distance are in conflict:

Lemma 1. MDS codes with parameters (k, n− k) cannot
have locality smaller than k.

Lemma 1 implies that MDS codes have the worst possible lo-
cality since any k blocks suffice to reconstruct the entire file,

1In classical coding theory literature, codes are denoted by
(n, k) where n is the number of data plus parity blocks, clas-
sically called blocklength. A (10,4) RS would be classically
denoted by (n=14,k=10) Reed-Solomon. Reed-Solomon
codes form the most well-known family of MDS codes.

not just a single block. This is exactly the cost of optimal
fault tolerance.

The natural question is what is the best locality possible
if we settled for “almost MDS” code distance. We answer
this question and construct the first family of near-MDS
codes with non-trivial locality. We provide a randomized
an explicit family of codes that have logarithmic locality on
all coded blocks and distance that is asymptotically equal to
that of an MDS code. We call such codes (k, n−k, r) Locally
Repairable Codes (LRCs) and present their construction in
the following section.

Theorem 1. There exist (k, n − k, r) Locally Repairable
codes with logarithmic block locality r = log(k) and distance
dLRC = n − (1 + δk) k + 1. Hence, any subset of k (1 + δk)
coded blocks can be used to reconstruct the file, where δk =

1
log(k)

− 1
k

.

Observe that if we fix the code rate R = k
n

of an LRC
and let k grow, then its distance dLRC is almost that of a
(k, n− k)-MDS code; hence the following corollary.

Corollary 1. For fixed code rate R = k
n

, the distance
of LRCs is asymptotically equal to that of (k, n − k)-MDS

codes limk→∞
dLRC
dMDS

= 1.

LRCs are constructed on top of MDS codes (and the most
common choice will be a Reed-Solomon code).

The MDS encoded blocks are grouped in logarithmic sized
sets and then are combined together to obtain parity blocks
of logarithmic degree. We prove that LRCs have the opti-
mal distance for that specific locality, due to an information
theoretic tradeoff that we establish. Our locality-distance
tradeoff is universal in the sense that it covers linear or
nonlinear codes and is a generalization of recent result of
Gopalan et al. [12] which established a similar bound for
linear codes. Our proof technique is based on building an
information flow graph gadget, similar to the work of Di-
makis et al.[7, 8]. Our analysis can be found in the Ap-
pendix.

2.1 LRC implemented in Xorbas
We now describe the explicit (10, 6, 5) LRC code we imple-

mented in HDFS-Xorbas. For each stripe, we start with 10
data blocks X1, X2, . . . , X10 and use a (10, 4) Reed-Solomon
over a binary extension field F2m to construct 4 parity blocks
P1, P2, . . . , P4. This is the code currently used in X produc-
tion clusters that can tolerate any 4 block failures due to
the RS parities. The basic idea of LRCs is very simple:
we make repair efficient by adding additional local parities.
This is shown in figure 2.

By adding the local parity S1 = c1X1+c2X2+c3X3+c4X5,
a single block failure can be repaired by accessing only 5
other blocks. For example, if block X3 is lost (or degraded
read while unavailable) it can be reconstructed by

X3 = c−1
3 (S1 − c1X1 − c2X2 − c4X4 − c5X5). (1)

The multiplicative inverse of the field element c3 exists as
long as c3 6= 0 which is the requirement we will enforce for all
the local parity coefficients. It turns out that the coefficients
ci can be selected to guarantee that all the linear equations
will be linearly independent. In the Appendix we present a
randomized and a deterministic algorithm to construct such
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Figure 2: Locally repairable code implemented in HDFS-
Xorbas. The four parity blocks P1, P2, P3, P4 are con-
structed with a standard RS code and the local parities
provide efficient repair in the case of single block failures.
The main theoretical challenge is to choose the coefficients
ci to maximize the fault tolerance of the code.

coefficients. We emphasize that the complexity of the de-
terministic algorithm is exponential in the code parameters
(n, k) and therefore useful only for small code constructions.

The disadvantage of adding these local parities is the extra
storage requirement. While the original RS code was storing
14 blocks for every 10, the three local parities increase the
storage overhead into 17/10. There is one additional opti-
mization that we can perform: We show that the coefficients
c1, c2, . . . c10 can be chosen so that the local parities satisfy
an additional alignment equation S1 +S2 +S3 = 0. We can
therefore not store the local parity S3 and instead consider
it an implied parity. Note that to obtain this in the figure,
we set c′5 = c′6 = 1.

When a single block failure happens in a RS parity, the
implied parity can be reconstructed and used to repair that
failure. For example, if P2 is lost, it can be recovered by
reading 5 blocks P1, P3, P4, S1, S2 and solving the equation

P2 = (c′2)−1(−S1 − S2 − c′1P1 − c′3P3 − c′4P4). (2)

In our theoretical analysis we show how to find non-zero
coefficients ci (that must depend on the parities Pi but are
not data dependent) for the alignment condition to hold.
We also show that for the Reed-Solomon code implemented
in HDFS RAID, choosing ci = 1 and therefore performing
simple XOR operations is sufficient. We further prove that
this code has the largest possible distance (d = 5) for this
given locality r = 5 and blocklength n = 16.

3. SYSTEM DESCRIPTION
HDFS-RAID is an open source module that implements

RS encoding and decoding over Apache Hadoop [3]. It
provides a Distributed Raid File system (DRFS) that runs
above HDFS. Files stored in DRFS are divided into stripes,
i.e., groups of several blocks. For each stripe, a number of
parity blocks are calculated and stored as a separate, parity
file corresponding to the original file. HDFS-RAID is im-
plemented in Java (approximately 12,000 lines of code) and
is currently used in production by several organizations, in-
cluding social network X.

The module consists of several components, among which
RaidNode and BlockFixer are the most relevant here:
• The RaidNode is a daemon responsible for the creation

and maintenance of parity files for all data files stored
in the DRFS. One node in the cluster is generally des-
ignated to run the RaidNode. The daemon periodically
scans the HDFS file system and decides whether a file
is to be RAIDed or not, based on its size and age. In
large clusters, RAIDing is done in a distributed manner
by assigning MapReduce jobs to nodes across the cluster.
After encoding, the RaidNode lowers the replication level
of RAIDed files to one.
• The BlockFixer is a separate process that runs at the

RaidNode and periodically checks for lost or corrupted
blocks among the RAIDed files. When blocks are tagged
as lost or corrupted, the BlockFixer rebuilds them using
the surviving blocks of the stripe, again, by dispatching
repair MapReduce jobs.

Both RaidNode and BlockFixer rely on an underlying com-
ponent: ErasureCode. ErasureCode implements the erasure
encoding/decoding functionality. In X’s HDFS-RAID, an
RS (10, 4) erasure code is implemented through Erasure-
Code (4 parity blocks are created for every 10 data blocks).

3.1 HDFS-Xorbas
Our system, HDFS-Xorbas (or simply Xorbas), is a

modification of HDFS-RAID that incorporates Locally Re-
pairable Codes (LRC). To distinguish it from the HDFS-
RAID implementing RS codes, we refer to the latter as
HDFS-RS. In Xorbas, the ErasureCode component has
been extended to implement LRC on top of traditional RS
codes. The RaidNode and BlockFixer components were also
subject to modifications in order to take advantage of the
new coding scheme.

HDFS-Xorbas is designed for deployment in a large-scale
Hadoop data warehouse, such as X’s clusters. For that rea-
son, our system provides backwards compatibility: Xorbas
understands both LRC or RS codes and can incrementally
modify RS encoded files into LRCs by adding only local
XOR parities. To provide this integration with HDFS-RS,
the specific LRCs we use are designed as extension codes
of the (10,4) Reed-Solomon codes used in X. First, a file is
coded using X’s RS code and then a small number of addi-
tional local parity blocks are created to provide local repairs.

3.1.1 Encoding
Once the RaidNode detects a file which is suitable for

RAIDing (according to parameters set in a configuration
file) it launches the encoder for the file. The encoder initially
divides the file into stripes of 10 blocks and calculates 4
RS parity blocks. Depending on the size of the file, the
last stripe may contain fewer than 10 blocks and incomplete
stripes are “zero-padded” before the parities are created.

HDFS-Xorbas computes two extra parities for a total of 16
blocks per stripe (10 data blocks, 4 RS parities and 2 Local
XOR parities), as shown in 2. Similarly to the calculation
of the RS parities, Xorbas calculates all parity blocks in a
distributed manner through MapReduce encoder jobs. All
blocks are spread across the cluster according to Hadoop’s
current block placement policy.

3.1.2 Decoding & Repair
RaidNode starts a decoding process when corrupt files

are detected. Xorbas uses two decoders: the light-decoder
aimed at single block failures per stripe and the heavy-
decoder, employed when the light-decoder fails.



When the BlockFixer detects a missing block, it uses the
structure of the LRC to determine which 5 blocks are re-
quired to recover this block (or repair a corruption). Then,
streams are opened to these blocks and the light-decoder
attempts to repair by performing a simple XOR of these 5
blocks. A MapReduce job is used to perform the decoding
and the recovered block is positioned according to the block
placement policy.

If multiple failures have happened, the 5 required blocks
may not be available. In that case the light-decoder fails and
the heavy decoder is initiated. The heavy decoder operates
in the same way as in Reed-Solomon: streams to all the
blocks of the stripe are opened and decoding consists of try-
ing to solve linear equations for the lost blocks. For RS, the
system of linear equations has a Vandermonde structure [31]
which allows small CPU utilization.

In the currently deployed HDFS-RS implementation, even
when a single block is corrupt, the BlockFixer opens streams
to all 13 other blocks of the stripe (which could be reduced
to 10 with a more efficient implementation). The benefit of
Xorbas should therefore be clear: for all the single block fail-
ures and also many double block failures (as long as the two
missing blocks belong to different local XORs), the network
and disk I/O overheads will be significantly smaller.

4. RELIABILITY ANALYSIS
Compared to HDFS-RS, Xorbas has faster repairs but

stores 16 blocks for every 10 data blocks and hence should
expect slightly higher fault rate per stripe. We provide a
data reliability analysis by estimating the MTTDL (Mean
Time To Data Loss) under a standard Markov model to see
how RS and LRCs compare to replication in this metric.
Ford et al. [10], report values from Google clusters (cells)
and show that RS (9, 4) has about six orders of magnitude
better reliability than 3-way replication (for their cluster pa-
rameters). There exists significant literature on analyzing
the reliability of replication, RAID storage [32] and erasure
codes [13]. Most of this work relies on standard Markov
models to derive the MTTDL analytically for the various
storage schemes. We use a similar approach here to compare
the reliability of Replication, HDFS-RS and HDFS-Xorbas.
We note that the values derived here are not particularly
meaningful when looked in isolation, but are useful for com-
parison purposes (see also [14]).

In our analysis, the total cluster data is denoted by C and
S denotes the stripe size. We use the values N = 3000,
C = 30 PB, a mean time to failure of 4 years (= 1/λ) for
nodes, and set the block size to be B = 256MB (the default
at X’s warehouses). The network is the main bottleneck for
reliability. Based on X’s cluster measurements, we use γ =
1Gbps for repairs, a value that is limited since coded stripes
create traffic across racks. This is because all the blocks of
a coded stripe are placed in different racks to provide fault
tolerance for correlated failures.

The MTTDL values we computed using the Markov model
for replication, HDFS-RS and Xorbas are shown in Table 1.
We find that faster repair overcompensates for the storage
overhead of LRCs and allows Xorbas LRC (10,6,5) to have 2
more zeros of reliability compared to (10,4) Reed-Solomon.
The reliability of 3-replication is substantially lower than
both coded schemes, similar to what has been observed in
related studies [10].

Scheme MTTDL (days)
3-replication 2.3079E + 10
RS (10, 4) 3.3118E + 13

LRC (10, 6, 5) 1.2180E + 15

Table 1: Markov chain based reliability results for Replication,
Reed Solomon encoded HDFS and HDFS-Xorbas. Mean Time to
Data Loss (MTTDL) is measured in days and assumes indepen-
dent failures.

0 1 2 3 4 5

λ0 λ1 λ2 λ3 λ4

ρ1 ρ2 ρ3 ρ4

Figure 3: The Markov model used to calculate the MTTDL

5. EVALUATION
In this section, we provide details on a series of experi-

ments we performed to evaluate the performance of HDFS-
Xorbas in two environments: Amazon’s Elastic Compute
Cloud (EC2) [1] and a test cluster in Social Network X.

5.1 Evaluation Metrics
We rely primarily on the following metrics to evaluate

HDFS-Xorbas against HDFS-RS. The metrics are HDFS
Bytes Read, Network Traffic and Repair Duration. HDFS
Bytes Read corresponds to the total amount of data read by
the jobs initiated for repair. The corresponding measure-
ments are collected from the JobTracker reports through
a web interface and aggregated across all jobs per failure
event. Network traffic represents the total amount of data
sent from nodes in the cluster (measured in GB). Since
the cluster does not handle any external traffic, this value
is equal to the amount of data moving into nodes. Net-
work traffic was measured using Amazon’s AWS Cloudwatch
monitoring tools. Repair Duration is simply calculated as
the time interval between the starting time of the first repair
job and the ending time of the last repair job. Note that
AWS also provides a metric called DiskReadBytes, repre-
senting the number of actual bytes read from the disk. These
measurements are similar to HDFS Bytes Read (small devia-
tions can be justified due to memory caching) and hence, we
only focus on HDFS Bytes Read which allows us to isolate
the amount of data read specifically for repair.

5.2 Amazon EC2
For every experiment, we created two Hadoop clusters on

EC2, one running HDFS-RS and the other HDFS-Xorbas.
Each cluster consisted of 51 instances of type m1.small,
which corresponds to a 32-bit machine with 1.7 GB memory,
1 compute unit and 160 GB of storage, running Ubuntu/Linux-
2.6.32. One instance in each cluster served as a master, host-
ing Hadoop’s NameNode, JobTracker and RaidNode dae-
mons, while the remaining 50 instances served as slaves for
HDFS and MapReduce, each hosting a DataNode and a
TaskTracker daemon, thereby forming a Hadoop cluster of
total capacity roughly equal to 7.4 TB. Unfortunately, no



information is provided by EC2 on the topology of the clus-
ter.

In total, three experiments were performed on the above
setup, increasing the number of files stored for each exper-
iment (50, 100 and 200 files), to understand the impact of
the amount of data stored on system performance. The ob-
jective of the experiments was to measure key properties
such as the number of HDFS bytes read and the real net-
work traffic caused by the repairs. Towards this end, the
clusters were loaded with the same amount of logical data
and we manually triggered a series of failure events in both
the clusters simultaneously to study the dynamics of data
recovery.

We used a block size of 64 MB, and all our files were of
size 640 MB. Therefore, each file yields a single stripe with
14 and 16 full size blocks in HDFS-RS and HDFS-Xorbas
respectively. This choice is representative of the majority
of stripes in a production Hadoop cluster: extremely large
files are split into many stripes, so in total only a small
fraction of the stripes will have a smaller size. In addition,
it allows us to better predict the total amount of data that
needs to be read in order to reconstruct missing blocks and
hence interpret our experimental results. Finally, since block
repair depends only on blocks of the same stripe, using larger
files that would yield more than one stripe would not affect
our results. An experiment involving arbitrary file sizes, is
discussed in Section 5.3.

During the course of each single experiment, the two clus-
ters were initially loaded with files. Once all files were
RAIDed, we introduced node failures in which a pre-determined
number of DataNodes were terminated in both clusters si-
multaneously. After some time, the Block fixer started MapRe-
duce repair jobs which were used to create the measurements
of interest.

In each experiment, we carried out a total of eight fail-
ure events, each resulting in termination of one or more
DataNodes. The first four failure events consisted of single
DataNodes terminations, the next two were terminations of
triplets of DataNodes and finally two terminations of pairs
of DataNodes. For each failure event, the metrics mentioned
above were recorded. After each failure event, sufficient time
was provided for both clusters to complete the repair process
for all missing blocks, allowing measurements corresponding
to distinct events to be isolated. For example in Fig. 4 and
Fig. 5a we present measurements from the 200 file experi-
ment. The other experiments involving 50 and 100 files pro-
duce similar results and are not shown. The measurements
of all the experiments are combined in Figure 6.

For every failure event, while selecting DataNodes to be
terminated for each cluster, we made sure that the total
number of blocks lost were roughly the same for both clus-
ters. We followed this choice because our objective was to
compare the two systems for each block lost. However, since
Xorbas has an additional storage overhead, a random fail-
ure event would in expectation, lead to loss of 14.3% more
blocks in Xorbas compared to RS. In any case, results can
be adjusted to take this into account, without significantly
affecting the gains observed in our experiments.

Finally, in Figure 6, we present the measurements of HDFS
bytes read, network traffic and repair duration versus the
number of blocks lost, for all three experiments carried out
in EC2. We also plot the linear least squares fitting curve
for these measurements.

5.2.1 HDFS Bytes Read
Figure 4a depicts the total number of HDFS bytes read

by the BlockFixer jobs initiated during each failure event.
The bar plots show that HDFS-Xorbas reads 41%−52% the
amount of data that RS reads to reconstruct the same num-
ber of lost blocks. These measurements are consistent with
the theoretically expected values, given that more than one
blocks per stripe are occasionally lost (note that 12.14/5 =
41%). In Figure 6a it is shown that the number of HDFS
bytes read is linearly dependent on the number of blocks
lost, as expected. The slopes give us the average number of
HDFS bytes read per block for Xorbas and HDFS-RS. The
average number of blocks read per lost block are estimated
to be 11.5 and 5.8, showing the 2× benefit of HDFS-Xorbas.

5.2.2 Network Traffic
Figure 4b depicts the network traffic produced by the

BlockFixer jobs during the entire repair procedure. In par-
ticular, it shows the outgoing network traffic produced in
the cluster, aggregated across instances. Incoming network
traffic is similar since the cluster only communicates infor-
mation internally. Throughout our experiments, we con-
sistently observed that network traffic was roughly equal to
twice the number of bytes read. Therefore, gains in the num-
ber of HDFS bytes read, immediately translate to network
traffic gains. In Figure 5a, we present the Network Traffic
plotted continuously during the course of the 200 file exper-
iment, with a 5-minute resolution. The sequence of failure
events is clearly visible. The fact that the traffic peaks of the
two systems are different is an indication that the available
bandwidth was not saturated. However, the bottleneck in
MapReduce tasks is reportedly the network [5, 16, 17]. This
is due to the fact that when the amount of data increases,
more MapReduce tasks need to run in parallel, draining net-
work resources. In these large scale environments, link sat-
uration is expected to limit the data transfer rates and we
expect higher recovery times for HDFS-RS.

5.2.3 Repair Duration
Figure 4c depicts the total duration of the recovery pro-

cedure i.e., the interval from the launch time of the first
block fixing job to the termination of the last one. Com-
bining measurements from all the experiments, Figure 6c
shows the repair duration versus the number of blocks re-
paired. These figures show that Xorbas finishes 25% to 45%
faster than HDFS-RS. This is primarily due to the reduced
amount of data that need to be downloaded during repair
compared to HDFS-RS. From the CPU Utilization plots we
conclude that HDFS RS and Xorbas have very similar CPU
requirements and this does not seem to influence the repair
times.

5.3 Social Network X’s cluster
In addition to the series of controlled experiments per-

formed over EC2, we performed one more experiment on
Social Network X’s test cluster. This test cluster consisted
of 35 nodes configured with a total capacity of 370 TB. In-
stead of placing files of pre-determined sizes as we did in
EC2, we utilized the existing set of files in the cluster: 3, 262
files, totaling to approximately 2.7 TB of logical data. The
block size used was 256 MB (same as in X’s production clus-
ters). Roughly 94% of the files consisted of 3 blocks and the
remaining of 10 blocks, leading to an average 3.4 blocks per
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(a) HDFS Bytes Read per failure event.
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(b) Network Out Traffic per failure event.
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(c) Repair duration per failure event.

Figure 4: The metrics measured during the 200 file experiment. Network-in is similar to Network-out and so it is not displayed
here. During the course of the experiment, we simulated eight failure events and the x-axis gives details of the number of
DataNodes terminated during each failure event and the number of blocks lost are displayed in parentheses.
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(a) Cluster network traffic.
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(b) Cluster Disk Bytes Read.
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(c) Cluster average CPU utilization.

Figure 5: Measurements in time from the two EC2 clusters during the sequence of failing events.

file.

Blocks HDFS GB read Repair
Lost Total /block Duration

RS 369 486.6 1.318 26 min
Xorbas 563 330.8 0.58 19 min

Table 2: Experiment on Social Network X’s Cluster Results.

For our experiment, HDFS-RS was deployed on the cluster
and upon completion of data RAIDing, a random DataN-
ode was terminated. HDFS Bytes Read and the Repair
Duration measurements were collected. Unfortunately, we
did not have access to Network Traffic measurements. The
experiment was repeated, deploying HDFS-Xorbas on the
same set-up. Results are shown in Table 2. Note that in this
experiment, HDFS-Xorbas stored 27% more than HDFS-RS
(ideally, the overhead should be 13%), due to the small size
of the majority of the files stored in the cluster. As noted
before, files typically stored in HDFS are large (and small
files are typically archived into large HAR files). Further,
it may be emphazised that the particular dataset used for
this experiment is by no means representative of the dataset
stored in Social Network X’s production clusters.

In this experiment, the number of blocks lost in the second
run, exceed those of the first run by more than the storage
overhead introduced by HDFS-Xorbas. However, we still

observe benefits in the amount of data read and repair du-
ration, and the gains are even more clearer when normalizing
by the number of blocks lost.

6. RELATED WORK
Optimizing erasure code designs for efficient single block

repair is a topic that has recently attracted significant at-
tention due to its relevance to distributed systems. Dimakis
et al. [7] showed that the repair network traffic can be signif-
icantly reduced but at a cost of higher disk I/O. Subsequent
work has focused on achieving these information theoretic
bounds with explicit code constructions (see e.g. [8, 27, 30,
24]). While this work is closely related, it requires process-
ing at the surviving nodes before transmission, a feature that
can increase the required disk I/O. Further, most construc-
tions require exponential field size and sub-packetization to
achieve the information theoretic bounds. To the best of our
knowledge there are currently no known practical regenerat-
ing codes with low complexity for storage overheads below
2, which is the regime of interest.

A second line of work has focused on optimizing repair
disk I/O and network bandwidth with non-MDS code con-
structions (e.g. [19, 23, 12]) The codes we introduce are op-
timal in terms of their locality and match the bound shown
in [12]. In our BBB recent prior work [?] we generalize the
locality bounds of [12] and define locally repairable codes
that can store more slightly more information per block,
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(c) Repair Duration versus blocks lost

Figure 6: Measurement points of failure events versus the
total number of blocks lost in the corresponding events.
Measurements are from all three experiments. Linear least
squares curves.

defining a tradeoff between storage, distance and locality.
The main theoretical innovation of this paper is an deter-

ministic construction of LRCs that relies on Reed-Solomon

global parities. We show how the concept of implied par-
ities can save storage and show how to explicitly achieve
parity alignment if the global parities are Reed-Solomon.
Further, we present a system implementation and measure-
ments showing the network and disk IO benefits.

7. CONCLUSIONS
Modern storage systems are transitioning to erasure cod-

ing. We introduced a new family of codes called Locally
Repairable Codes (LRCs) that have marginally suboptimal
storage but significantly smaller repair disk I/O and net-
work bandwidth requirements. In our implementation, we
observed 2× disk I/O and network reduction for the cost of
14% more storage, a price that seems reasonable for many
scenarios.

One related area where we believe locally repairable codes
can have a significant impact is purely archival clusters. In
this case we can deploy large LRCs (i.e., stipe sizes of 50 or
100 blocks) that can simultaneously offer high fault tolerance
and small storage overhead. This would be impractical if
Reed-Solomon codes are used since the repair traffic grows
linearly in the stripe size. Local repairs would further allow
spinning disks down [6] since very few are required for single
block repairs.

In conclusion, we believe that LRCs create a new operat-
ing point that will be practically relevant in large-scale cloud
storage systems, especially when the network bandwidth is
the main performance bottleneck.
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10. APPENDIX A

10.1 Distance and Locality through Entropy
In the following, we use a characterization of the code

distance d of a length n code that is based on the entropy
function. This characterization is universal in the sense that
it covers any linear or nonlinear code designs.

Let x be a file of size M that we wish to split and store
with redundancy k

n
in n blocks, where each block has size M

k
.

Without loss of generality, we assume that the file is split in

k blocks of the same size x
4
= [X1 . . . Xk] ∈ F1×k, where F is

the finite field over which all operations are performed. The
entropy of each file block isH(Xi) = M

k
, for all i ∈ [k], where

[n] = {1, . . . , n}.2 Then, we define an encoding (generator)
map G : F1×k 7→ F1×n that takes as input the k file blocks
and outputs n coded blocks G(x) = y = [Y1 . . . Yn], where
H(Yi) = M

k
, for all i ∈ [n]. The encoding function G defines

a (k, n − k) code C over the vector space F1×n. We can
calculate the effective rate of the code as the ratio of the
entropy of the file blocks to the sum of the entropies of the
n coded blocks

R =
H(X1, . . . , Xk)∑n

i=1 H(Yi)
=
k

n
. (3)

The distance d of the code C is equal to the minimum
number of erasures of blocks in y after which the entropy of

2Equivalently, each block can be considered as a random
variable that has entropy M

k
.



the remaining blocks is strictly less than M

d = min
H({Y1,...,Yn}\E)<M

|E| = n− max
H(S)<M

|S|, (4)

where E ∈ 2{Y1,...,Yn} is a block erasure pattern set and
2{Y1,...,Yn} denotes the power set of {Y1, . . . , Yn}, i.e., the
set that consists of all subset of {Y1, . . . , Yn}. Hence, for a
code C of length n and distance d, any n−d+1 coded blocks
can reconstruct the file, i.e., have joint entropy at least equal
to M . It follows that when d is given, n−d is the maximum
number of coded variables that have entropy less than M .

The locality r of a code can also be defined in terms of
coded block entropies. When a coded block Yi, i ∈ [n], has
locality r, then it is a function of r other coded variables
Yi = fi(YR(i)), whereR(i) indexes the set of r blocks Yj , j ∈
R(i), that can reconstruct Yi, and fi is some function (linear
or nonlinear) on these r coded blocks. Hence, the entropy of
Yi conditioned on its repair group R(i) is identically equal
to zero H(Yi|fi(YR(i))) = 0, for i ∈ [n]. This functional
dependency of Yi on the blocks in R(i) is fundamentally the
only code structure that we assume in our derivations.3 This
generality is key to providing universal information theoretic
bounds on the code distance of (k, n−k) linear, or nonlinear,
codes that have locality r. Our following bounds can be
considered as generalizations of the Singleton Bound on the
code distance when locality is taken into account.

10.2 Information theoretic limits of Locality
and Distance

We consider (k, n − k) codes that have block locality r.
We find a lower bound on the distance by lower bounding
the largest set S of coded blocks whose entropy is less than
M , i.e., a set that cannot reconstruct the file. Effectively,
we solve the following optimization problem that needs to
be performed over all possible codes C and yields a best-case
minimum distance

min
C

max
S
|S| s.t.: H(S) < M, S ∈ 2{Y1,...,Yn}.

We are able to provide a bound by considering a single prop-
erty: each block is a member of a repair group of size r+ 1.

Definition 3. For a code C of length n and locality r,
a coded block Yi along with the blocks that can generate it,
YR(i), form a repair group Γ(i) = {i,R(i)}, for all i ∈ [n].
We refer to these repair groups, as (r + 1)-groups.

It is easy to check that the joint entropy of the blocks in a
single (r + 1)-group is at most as much as the entropy of r
file blocks

H
(
YΓ(i)

)
= H

(
Yi, YR(i)

)
= H

(
YR(i)

)
+H

(
Yi|YR(i)

)
= H

(
YR(i)

)
≤

∑
j∈R(i)

H(Yj) = r
M

k
,

for all i ∈ [n]. To determine the upper bound on minimum
distance of C, we construct the maximum set of coded blocks
S that has entropy less than M . We use this set to derive
the following theorem.

3In the following, we consider codes with uniform locality,
i.e., (k, n−k) codes where all encoded blocks have locality r.
These codes are referred to as non-canonical codes in [12].

Theorem 2. For a code C of length n, where each coded
block has entropy M

k
and locality r, the minimum distance

is bounded as

d ≤ n−
⌈
k

r

⌉
− k + 2. (5)

Proof: Our proof follows the same steps as the one in [12].
We start by building the set S in steps and denote the col-
lection of coded blocks at each step as Si. The algorithm
that builds the set is in Fig. 7. The goal is to lower bound
the cardinality of S, which results in an upper bound on
code distance d, since d ≤ n − |S|. At each step we denote
the difference in cardinality of Si ans Si−1 and the difference
in entropy as si = |Si| − |Si−1| and hi = H(Si)−H(Si−1),
respectively.

step
1 Set S0 = ∅ and i = 1
2 WHILE H(Si−1) < M
3 Pick a coded block Yj /∈ Si−1

4 IF H(Si−1 ∪ {YΓ(j)}) < M
5 set Si = Si−1 ∪ YΓ(j)

6 ELSE IF H(Si−1 ∪ {YΓ(j)}) ≥M
7 pick Ys ⊂ YΓ(j) s.t. H(Ys ∪ Si−1) < M
8 set Si = Si−1 ∪ Ys
9 i = i+ 1

Figure 7: The algorithm that builds set S.

At each step (depending on the possibility that two (r+1)-
groups overlap) the difference in cardinalities si is bounded
as 1 ≤ si ≤ r+1, that is si = r+1−p, where

∣∣{YΓ(j)} ∩ Si−1

∣∣ =
p. Now there exist two possible cases. First, the case
where the last step set Sl is generated by line 5. For this
case we can also bound the entropy as hi ≤ (si − 1)M

k
⇔

si ≥ k
M
hi + 1 which comes from the fact that, at least

one coded variable in {YΓ(j)} is a function of variables in
Si−1 ∪ YR(j). Now, we can bound the cardinality |Sl| =∑l
i=1 si ≥

∑l
i=1

(
khi
M

+ 1
)

= l + k
M

∑l
i=1 hi. We now have

to bound l and
∑l
i=1 hi. First, observe that since l is our

“last step,” this means that the aggregate entropy in Sl
should be less than the file size, i.e., it should have a value
M − c · M

k
, for 0 < c ≤ 1. If c > 1 then we could collect an-

other variable in that set. On the other hand, if c = 0, then
the coded blocks in Sl would have been sufficient to recon-
struct the file. Hence, M − M

k
≤
∑l
i=1 hi < M . We shall

now lower bound l. The smallest l′ ≤ l (i.e., the fastest)
upon which Sl′ reaches an aggregate entropy that is greater
than, or equal to M , can be found in the following way: if
we could only collect (r+ 1)-groups of entropy rM

k
, without

“entropy losses” between these groups, i.e., if there were no
further dependencies than the ones dictated by locality, then
we would stop just before Sl′ reached an entropy of M , that

is
∑l′

i=1 hl′ < M ⇔ l′rM
k
< M ⇔ l′ <

⌈
k
r

⌉
. However, l′ is

an integer, hence l′ =
⌈
k
r

⌉
−1. We apply the above to bound

the cardinality |Sl| ≥ k−1+l′ ≥ k−1+
⌈
k
r

⌉
−1 = k+

⌈
k
r

⌉
−2,

in which case we obtain d ≤ n−
⌈
k
r

⌉
− k + 2.

We move to the second case where we reach line 6 of
the building algorithm: the entropy of the file can be cov-
ered only by collecting (r + 1) groups. This depends on
the remainder of the division of M by rM

k
. Posterior to



collecting the (r + 1)-groups, we are left with some en-
tropy that needs to be covered by at most r − 1 additional
blocks not in Sl′ . The entropy not covered by the set Sl′
is M − l′rM

k
= M −

(⌈
k
r

⌉
− 1
)
rM
k

= M −
⌈
k
r

⌉
M
k

+ rM
k

.
To cover that we need an additional number of blocks s ≥⌈
M−l′rM

k
M
k

⌉
= k − l′r = k −

(⌈
k
r

⌉
− 1
)
r. Hence, our final set

Sl has size

|Sl|+ s− 1 = l(r + 1) + s− 1 ≥ l′(r + 1) + k −
(⌈

k

r

⌉
− 1

)
− 1

=

(⌈
k

r

⌉
− 1

)
(r + 1) + k − r

(⌈
k

r

⌉
− 1

)
− 1 =

⌈
k

r

⌉
+ k − 2.

Again, due to the fact that the distance is bounded by n−|S|
we have d ≤ n−

⌈
k
r

⌉
− k + 2. 2

From the above proof we obtain the following corollary.

Corollary 2. In terms of the code distance, non-overlapping
(r + 1)-groups are optimal.

In [12], it was proven that (k, n − k) linear codes have
minimum code distance that is bounded as d ≤ n − k −⌈
k
r

⌉
+ 2. As we see from our distance-locality bound, the

limit of linear codes is information theoretic optimal, i.e.,
linear codes suffice to achieve it. Indeed, in the following
we show that the distance bound is tight and we present
randomized and explicit codes that achieve it.4

10.3 Achievability of the Bound
In this section, we show that the bound of Theorem 2 is

achievable using a random linear network coding (RLNC)
approach as the one presented in [18] Our proof uses a vari-
ant of the information flow graph that was introduced in [7].
We show that a distance d is feasible if a cut-set bound on
this new flow graph is sufficiently large for multicast sessions
to run on it.

In the same manner as [7], the information flow graph
represents a network where the k input blocks are depicted
as sources, the n coded blocks are represented as intermedi-
ate nodes of the network, and the sinks of the network are
nodes that need to decode the k file blocks. The innova-
tion of the new flow graph is that it is “locality aware” by
incorporating an appropriate dependency subgraph that ac-
counts for the existence of repair groups of size (r+ 1). The
specifications of this network, i.e., the number and degree
of blocks, the edge-capacities, and the cut-set bound are all
determined by the code parameters k, n−k, r, d. For coding
parameters that do not violate the distance bound in Theo-
rem 2, the minimum s− t cut of such a flow graph is at least
M . The multicast capacity of the induced network is achiev-
able using random linear network codes. This achievability
scheme corresponds to a scalar linear code with parameters
k, n− k, r, d.

In Fig. 8, we show the general structure of an information
flow graph. We refer to this directed graph as G(k, n−k, r, d)
with vertex set

V =
{
{Xi; i ∈ [k]},

{
Γin
j ,Γ

out
j ; j ∈ [n]

}
,{

Y in
j , Y

out
j ; j ∈ [n]

}
, {DCl; ∀l ∈ [T ]}

}
.

4In our following achievability proof of the above infor-
mation theoretic bound we assume that (r + 1)|n and we
consider non-overlapping repair groups. This means that
Γ(i) ≡ Γ(j) for all i, j ∈ Γ(i).
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Figure 8: The G(k, n− k, r, d) information flow graph.

The directed edge set is implied by the following edge ca-
pacity function

ce(v, u) =



∞,(v, u) ∈
(
{Xi; i ∈ [k]},

{
Γin
j ; j ∈

[
n
r+1

]})
∪
({

Γout
j ; j ∈

[
n
r+1

]}
,
{
Y in
j ; j ∈ [n]

})
∪
({

Y out
j j ∈ [n]

}
, {DCl; l ∈ [T ]}

)
,

M
k
,(v, u) ∈

({
Y in
j j ∈ [n]

}
,
{
Y out
j j ∈ [n]

})
,

0, otherwise.

The vertices {Xi; i ∈ [k]} correspond to the k file blocks and{
Y out
j ; j ∈ [n]

}
correspond to the coded blocks. The edge

capacity between the in- and out- Yi vertices corresponds
to the entropy of a single coded block. When, r + 1 blocks
are elements of a group, then their “joint flow,” or entropy,
cannot exceed rM

k
. To enforce this entropy constraint, we

bottleneck the in-flow of each group by a node that restricts
it to be at most rM

k
. For a group Γ(i), we add node Γin

i that
receives flow by the sources and is connected with an edge
of capacity rM

k
to a new node Γout

i . The latter connects to
the r + 1 blocks of the i-th group. The file blocks travel
along the edges of this graph towards the sinks, which we
call Data Collectors (DCs). A DC needs to connect to as
many coded blocks as such that it can reconstruct the file.
This is equivalent to requiring s − t cuts between the file
blocks and the DCs that are at least equal to M , i.e., the
file size. We should note that when we are considering a
specific group, we know that any block within that group
can be repaired from the remaining r blocks. When a block
is lost, the functional dependence among the blocks in an
(r+1)-group allow a newcomer block to compute a function
on the remaining r blocks and reconstruct what was lost.

Observe that if the distance of the code is d, then there
are T =

(
n

n−d+1

)
DCs, each with in-degree n− d+ 1, whose

incident vertices originate from n − d + 1 blocks. The cut-
set bound of this network is defined by the set of minimum
cuts between the file blocks and each of the DCs. A source-
DC cut in G(k, n − k, r, d) determines the amount of flow
that travels from the file blocks to the DCs. When d is
consistent with the bound of Theorem 2, the minimum of
all the s− t cuts is at least as much as the file size M . The
following lemma states that if d is consistent with the bound
of Theorem 2, then the minimum of all the cuts is at least
as much as the file size M .



Lemma 2. The minimum source-DC cut in G(k, n−k, r, d)
is at least M , when d ≤ n−

⌈
k
r

⌉
− k + 2.

Proof : Omitted due to lack of space. 2

Lemma 2 verifies that for given n, k, r, and a valid distance d
according to Theorem 2, the information flow graph is con-
sistent with the bound: the DCs have enough entropy to de-
code all file blocks, when the minimum cut is more than M .
The above results imply that the flow graph G(k, n− k, r, d)
captures both the blocks locality and the DC requirements.
Then, a successful multicast session on G(k, n − k, r, d) is
equivalent to all DCs decoding the file.

Theorem 3. If a multicast session on G(k, n− k, r, d) is
feasible, then there exist a (k, n− k) code C of locality r and
distance d .

Hence, the random linear network coding (RLNC) scheme
of Ho et al. [18] achieves the cut-set bound of Gr(k, n −
k, r, d), i.e., there exist capacity achieving network codes,
which implies that there exist codes that achieve the dis-
tance bound of Theorem 2. Instead of the RLNC scheme, we
could use the deterministic construction algorithm of Jaggi
et al. [20] to construct explicit capacity achieving linear
codes for multicast networks. Using that scheme, we could
obtain in time polynomial in T explicit (k, n − k) codes of
locality r.

Lemma 3. For a network with E edges, k sources, and
T destinations, where η links transmit linear combination
of inputs, the probability of success of the RLNC scheme is

at least
(

1− T
q

)η
. Moreover, using the algorithm in [20],

a deterministic linear code over F can be found in time
O (ETk(k + T )).

The number of edges in our network is E = n(k+2r+3)
r+1

+

(n−d+ 1)
(

n
k+d kr e−1

)
hence we can calculate the complexity

order of the deterministic algorithm, which is ETk(k+T ) =

O
(
T 3k2

)
= O

(
k28

nH2

(
r

(r+1)R

))
, where H2(·) is the binary

entropy function. The above and Lemma 3 give us the fol-
lowing existence theorem

Theorem 4. There exists a linear code over F with local-
ity r and length n, such that (r+1)|n, that has distance d =

n−
⌈
k
r

⌉
−k+2, if |F| = q >

(
n

k+d kr e−1

)
= O

(
2
nH2

(
r

(r+1)R

))
.

Moreover, we can construct explicit codes over F, with |F| =

q, in time O
(
k28

nH2

(
r

(r+1)R

))
.

Observe that by setting r = log(k), we obtain Theorem 1.
Moreover, we would like to note that if for each (r + 1)-
group we “deleted” a coded block, then the remaining code
would be a (k, n′ − k)-MDS code, where n′ = n − n

r+1
, as-

suming no repair group overlaps. This means that LRCs are
constructed on top of MDS codes by adding r-degree par-
ity coded blocks. A general construction that operated over
small fields and could be constructed in time polynomial in
the number of DCs is an interesting open problem.

10.4 An Explicit LRC using Reed-Solomon Par-
ities

We design a (10, 6, 5)-LRC based on Reed-Solomon Codes
and Interference Alignment. We use as a basis for that a

(10, 4)-RS code defined over a binary extension field F2m .
We concentrate on these specific instances of RS codes since
these are the ones that are implemented in practice and in
particular in the HDFS RAID component of Hadoop. We
continue introducing a general framework for the desing of
(k, n− k) Reed-Solomon Codes.

The k × n (Vandermonde type) parity-check matrix of
a (k, n − k)-RS code defined over an extended binary field
F2m , of order q = 2m, is given by [H]i,j = ai−1

j−1, where
a0, a1, . . . , an−1 are n distinct elements of the field F2m . The
order of the field has to be q ≥ n. The n − 1 coefficients
a0, a1, . . . , an−1 are n distinct elements of the field F2m . We
can select α to be a generator element of the cyclic multi-
plicative group defined over F2m . Hence, let α be a prim-
itive element of the field F2m . Then, [H]i,j = α(i−1)(j−1),
for i ∈ [k], j ∈ [n]. The above parity check matrix defines a
(k, n − k)-RS code. It is a well-known fact, that due to its
determinant structure, any (n − k) × (n − k) submatrix of
H has a nonzero determinant, hence, is full-rank. This, in
terms, means that a (k, n − k)-RS defined using the parity
check matrix H is an MDS code, i.e., has optimal minimum
distance d = n − k + 1. We refer to the k × n generator
matrix of this code as G.

Based on a (14, 10)-RS generator matrix, we will introduce
2 simple parities on the first 5 and second 5 coded blocks
of the RS code. This, will yield the generator matrix of our
LRC

GLRC =

[
G

∣∣∣∣∣
5∑
i=1

gi

10∑
i=6

gi

]
, (6)

where gi denotes the i-th column of G, for i ∈ [14]. We
would like to note that even if GLRC is not in systematic
form, i.e., the first 10 blocks are not the initial file blocks,
we can easily convert it into one. To do so we need to apply a
full-rank transformation on the rows of GLRC in the follow-
ing way: AGLRC = A [G:,1:10 G:,11:15] = [I10 AG:,11:15],
where A = G−1

:,1:10 and G:,i:j is a submatrix of G that con-
sists of columns with indices from i to j. This transforma-
tion renders our code systematic, while retaining its distance
and locality properties. We proceed to the main result of
this section.

Theorem 5. The code C of length 16 defined by GLRC

has locality 5 for all coded blocks and optimal distance d = 5.

Proof: We first prove that all coded blocks of GLRC

have locality 5. Instead of considering block locality, we can
equivalently consider the locality of the columns of GLRC,
without loss of generality. First let i ∈ [5]. Then, gi can be
reconstructed from the XOR parity

∑5
j=1 gj if the 4 other

columns gi, j ∈ {6, . . . , 10}\i, are subtracted from it. The
same goes for i ∈ {6, . . . , 10}, i.e., gi can be reconstructed by
subtracting gj , for j ∈ {6, . . . , 10}\i, from the XOR parity∑10
j=6 gj . However, it is not straightforward how to repair

the last 4 coded blocks, i.e., the parity blocks of the sys-
tematic code representation. At this point we make use of
Interference Alignment. Specifically, we observe the follow-
ing: since the all-ones vector of length n is in the span of
the rows of the parity check matrix H, then it has to be or-
thogonal to the generator matrix G, i.e., G1T = 0k×1 due
to the fundamental property GHT = 0k×(n−k). This means

that G1T = 0k×1 ⇔
∑14
i=1 gi = 0k×1 and any columns

of GLRC between the 11-th and 14-th are also a function



of 5 other columns. For example, for Y11 observe that we
have g11 =

(∑5
i=1 gi

)
+
(∑10

i=6 gi
)

+ g12 + g13 + g14, where(∑5
i=1 gi

)
is the first XOR parity and

(∑10
i=6 gi

)
is the sec-

ond and “−”s become “+”s due to the binary extended field.
In the same manner as g11, all other columns can be repaired
using 5 columns of GLRC. Hence all coded blocks have lo-
cality 5.

It should be clear that the distance of our code is at least
equal to its (14, 10)-RS precode, that is, d ≥ 5. We prove
that d = 5 is the maximum distance possible for a length
16 code has block locality 5. Let all codes of locality r = 5
and length n = 16 for M = 10. Then, there exist 6-groups
associated with the n coded blocks of the code. Let, YΓ(i)

be the set of 6 coded blocks in the repair group of i ∈ [16].
Then, H(YΓ(i)) ≤ 5, for all i ∈ [16]. Moreover, observe that
due to the fact that 5 6 |16 there have to exist at least two
distinct overlapping groups YΓ(i1) and YΓ(i2), i1, i2 ∈ [16],

such that
∣∣YΓ(i1) ∩ YΓ(i2)

∣∣ ≥ 1. Hence, although the cardi-

nality of
∣∣YΓ(i1) ∪ YΓ(i2)

∣∣ is 11 its joint entropy is bounded
as H(YΓ(i1), YΓ(i2)) = H(YR(i1)) + H(YR(i2)|YR(i1)) < 10,
i.e., at least one additional coded block has to be included
to reach an aggregate entropy of M = 10. Therefore, any
code of length n = 16 and locality 5 can have distance at
most 5, i.e., d = 5 is optimal for the given locality. 2


